
DiskSalv

Dave Haynie

DiskSalv ii

Copyright © Copyright1994 by Dave Haynie, All Rights Reserved

DiskSalv iii

COLLABORATORS

TITLE :

DiskSalv

ACTION NAME DATE SIGNATURE

WRITTEN BY Dave Haynie January 19, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

DiskSalv iv

Contents

1 DiskSalv 1

1.1 DiskSalv Help . 1

1.2 dave . 3

1.3 a3000plus . 3

1.4 nyx . 5

1.5 deathbed.vigil . 5

1.6 cool.projects . 6

1.7 schatztruhe . 8

1.8 iam . 9

1.9 whatsnew . 9

1.10 version1617 . 9

1.11 dsforward . 10

1.12 intro . 11

1.13 goesbad . 12

1.14 notfix . 13

1.15 canhelp . 14

1.16 intro.fixinplace . 14

1.17 intro.wherebadfiles . 15

1.18 intro.recoverbycopy . 16

1.19 install . 16

1.20 install.wb . 16

1.21 install.shell . 17

1.22 install.problems . 17

1.23 quickstart . 18

1.24 quick.setup . 18

1.25 quick.scan . 19

1.26 quick.output . 19

1.27 problems . 20

1.28 prob.error . 20

1.29 prob.key . 21

DiskSalv v

1.30 prob.ndos . 21

1.31 prob.novol . 22

1.32 prob.nodev . 22

1.33 giveitaway . 23

1.34 2304 . 24

1.35 devicesetup . 24

1.36 2200 . 25

1.37 basiclistviews . 25

1.38 devlistreq . 26

1.39 2213 . 26

1.40 2201 . 26

1.41 bestguess . 28

1.42 2215 . 28

1.43 2202 . 28

1.44 mmsalvage . 29

1.45 mmundelete . 30

1.46 mmrepair . 31

1.47 mmunformat . 32

1.48 mmcheck . 33

1.49 mmbackup . 33

1.50 mmcleanup . 34

1.51 inputbuttons . 35

1.52 2204 . 35

1.53 inputbuttons.about . 36

1.54 2203 . 36

1.55 2214 . 37

1.56 220d . 37

1.57 2208 . 37

1.58 2212 . 38

1.59 2205 . 38

1.60 220f . 39

1.61 220e . 39

1.62 inputproject . 40

1.63 2207 . 40

1.64 inputsettings . 40

1.65 2209 . 41

1.66 220a . 41

1.67 2210 . 41

1.68 2211 . 42

DiskSalv vi

1.69 2216 . 42

1.70 220b . 42

1.71 220c . 42

1.72 2206 . 43

1.73 patterns . 43

1.74 pat.names . 44

1.75 pat.attributes . 44

1.76 pat.compare . 44

1.77 pat.pattern . 45

1.78 pat.group . 45

1.79 pat.path . 45

1.80 pat.note . 45

1.81 pat.date . 46

1.82 pat.size . 46

1.83 pat.protect . 46

1.84 pat.match . 47

1.85 pat.comment . 47

1.86 deviceedit . 47

1.87 deviceselect . 48

1.88 devsel.current . 48

1.89 devsel.workbench . 48

1.90 devsel.dosdrivers . 49

1.91 7306 . 49

1.92 720a . 50

1.93 720b . 50

1.94 720c . 50

1.95 720d . 51

1.96 deveditmenu . 51

1.97 devedithelp . 51

1.98 720e . 52

1.99 rdbinout . 52

1.1007211 . 52

1.1017212 . 53

1.1027214 . 53

1.1037215 . 53

1.1047304 . 53

1.105paramfields . 54

1.1067200 . 55

1.1077210 . 55

DiskSalv vii

1.1087201 . 56

1.1097202 . 56

1.1107213 . 56

1.1117206 . 56

1.1127203 . 56

1.1137204 . 57

1.1147207 . 57

1.1157209 . 57

1.1167205 . 58

1.1177208 . 58

1.1183202 . 58

1.119scan.display . 59

1.120scan.operation . 59

1.121scan.chkroot . 60

1.122scan.cleaning . 60

1.123scan.copying . 60

1.124scan.chkdir . 60

1.125scan.expanding . 61

1.126scan.extras . 61

1.127scan.filtering . 61

1.128scan.analysis . 61

1.129scan.chkhash . 61

1.130scan.chklink . 62

1.131scan.list . 62

1.132scan.loose . 62

1.133scan.paused . 62

1.134scan.purifying . 63

1.135scan.rehash . 63

1.136scan.resolve . 63

1.137scan.salvaging . 63

1.138scan.scanning . 63

1.139scan.stopping . 64

1.140scan.tally . 64

1.141scan.results . 64

1.142event.chek . 65

1.143event.data . 66

1.144event.dsch . 66

1.145event.deld . 66

1.146event.dlnk . 66

DiskSalv viii

1.147event.err . 66

1.148event.file . 67

1.149event.flnk . 67

1.150event.free . 67

1.151event.good . 67

1.152event.kill . 68

1.153event.list . 68

1.154event.root . 68

1.155event.slnk . 68

1.156event.udir . 68

1.157event.wash . 69

1.158event.unkn . 69

1.159scan.buttons . 69

1.1603200 . 69

1.1613201 . 70

1.1623204 . 70

1.1633205 . 70

1.164430b . 70

1.165outputbrowser . 71

1.1664201 . 72

1.1674207 . 72

1.1684204 . 72

1.1694205 . 72

1.1704202 . 73

1.1714206 . 73

1.1724214 . 73

1.1734216 . 73

1.1744208 . 73

1.1754203 . 73

1.1764215 . 73

1.177outputpathsetup . 74

1.1784200 . 74

1.179420a . 74

1.1804213 . 74

1.181outputproject . 75

1.182outputhelp . 75

1.1834211 . 75

1.1844212 . 75

1.185outputsettings . 76

DiskSalv ix

1.186420b . 76

1.187420c . 76

1.188420d . 76

1.189420e . 77

1.190420f . 77

1.1914210 . 77

1.1924209 . 77

1.193appendix . 77

1.194supportfiles . 78

1.195glossary . 78

1.196glossary.adospattern . 79

1.197glossary.adosdate . 79

1.198glossary.dspattern . 80

1.199glossary.dosdevice . 80

1.200glossary.execdevice . 80

1.201glossary.filesystem . 81

1.202glossary.disk . 81

1.203glossary.harderror . 81

1.204glossary.partition . 82

1.205glossary.rdb . 82

1.206glossary.rootblock . 82

1.207glossary.softerror . 82

1.208glossary.streams . 83

1.209glossary.tapedevice . 84

1.210glossary.tripos . 84

1.211glossary.volume . 84

1.212cli . 84

1.213cp.askonerror . 86

1.214cp.bigblocks . 86

1.215cp.defaultfs . 86

1.216cp.diskcache . 87

1.217cp.filesystem . 87

1.218cp.forceguide . 87

1.219cp.font . 87

1.220cp.from . 88

1.221cp.interactive . 88

1.222cp.keepdos . 88

1.223cp.killdos . 88

1.224cp.loaddev . 88

DiskSalv x

1.225cp.lowmem . 88

1.226cp.makelinks . 89

1.227cp.memchunk . 89

1.228cp.mode . 89

1.229cp.noarchive . 89

1.230cp.nodates . 90

1.231cp.nodeepscan . 90

1.232cp.noguide . 90

1.233cp.nonotes . 90

1.234cp.noprotect . 90

1.235cp.nosizecheck . 90

1.236cp.nowarning . 91

1.237cp.pathmax . 91

1.238cp.pauseonerror . 91

1.239cp.pubscreen . 91

1.240cp.quickscan . 91

1.241cp.rejection . 91

1.242cp.retry . 92

1.243cp.skipdevs . 92

1.244cp.smallwindow . 92

1.245cp.tagchar . 92

1.246cp.to . 92

1.247streamformat . 93

1.248sf.root . 93

1.249sf.udir . 94

1.250sf.file . 94

1.251sf.data . 94

1.252sf.dlnk . 94

1.253sf.flnk . 95

1.254sf.slnk . 95

1.255sf.errs . 95

1.256sf.enda . 96

1.257memoryrequirements . 96

1.258amigadosformat . 96

1.259dosdrivers . 96

1.260dosdrivers.params . 97

1.261diskdoctor . 98

DiskSalv 1 / 98

Chapter 1

DiskSalv

1.1 DiskSalv Help

DiskSalv Version 3 Copyright 1994-1995 by
Dave Haynie
DiskSalv.Guide for DiskSalv 3 Copyright 1994-1995 by
Dave Haynie
DiskSalv 3 Release 12.18 Commercial

Published (German) by
Stefan Ossowski’s Schatztruhe
DiskSalv 3 Release 12.19 Commercial

Published (English) by
Intangible Assets Manufacturing
Welcome to the DiskSalv 3 electronic manual. This is a complete ←↩

on-line
AmigaGuide manual for DiskSalv. It can be accessed directly via AmigaGuide
readers, or as called up by the DiskSalv program’s help facility.

Table of Contents

Forward

What’s New

Introduction

Why Good Disks Go Bad

Why Doesn’t AmigaDOS Fix Errors?

How DiskSalv Can Help?

Installing DiskSalv

A Quick Start

Common Disk Problems

Commercial Versus Shareware

DiskSalv 2 / 98

The Input Window

Device Setup

Major Mode

Button Options

Project Menu

Settings Menu

Scan

Complex Patterns

The Device Editor

Device Selection

Device Edit/Creation

Device Analysis

Rigid Disk Block Functions

Parameter Fields

The Disk Scanner

Displays

Button Options

The Output Window

The Browser

Path Setup

Project Menu

Settings Menu

Salvage

Appendix

DiskSalv Support Files

Glossary of Terms

Command Parameters

DiskSalv Archival Format

Memory Requirements

DiskSalv 3 / 98

AmigaDOS Disk Format

DOSDrivers Files

The DiskDoctor Story

1.2 dave

Dave Haynie has been involved in the Amiga community since the ←↩
dawn of the

Amiga. He was an engineer on the Commodore C128 at the time Commodore
bought Amiga. He started using the Amiga in 1985, as soon as he could get
his hands on one. He bought one in 1986, and has been programming it ever
since.

As an Systems/Hardware Engineer at Commodore, Dave was the chief engineer
of the Amiga 2000, Amiga 2630, the Zorro III Bus Specification, Amiga

3000+
, Amiga 4091, and the
Nyx prototype
, and a leading member of the

engineering team on the Amiga 3000 and Amiga 4000. Dave had a number of

really cool projects
in the works when Commodore went under.

Independently of Commodore, Dave has been involved in a number of Amiga
projects. As well as DiskSalv, Dave wrote SetCPU, the popular 68030 MMU
tool, and several other example programs. Dave has written extensively, for
magazines including AmigaWorld, Amazing Computing, Amiga Sentry, .Info,
AmigaWorld Technical Journal, Compute!, Amiga Shopper (UK), and most
recently, Amiga Format.

In less technical times, Dave resides in the great state of South Jersey,
with his wife Liz, kids Sean (3) and Kira (1), dog Auryn (Borzi), and cat
Iggy (Black & White, footwarmer). When he’s not on the computer, Dave has
too many other interests. He practices Aikido regularly, he’s into
photography, video (see his first film,

the Deathbed Vigil
), cycling,

canoing, swimming, woodworking, Japanese knives, writing (technical and
songs), modern Rock music, and good beer. Since the demise of Commodore
("well, at least I can have a life now"), Dave’s been working at Scala,
Inc., and learning to play keyboards.

1.3 a3000plus

In 1990, Commodore was nearing completion of the first major ←↩
upgrade to the

Amiga chip set. Code named "Pandora", and later dubbed "AA" (because of the

DiskSalv 4 / 98

AAA
project, already underway), this chip set would boot the basic ←↩

graphics
capabilities of the Amiga considerably, while retaining full register-level
compatibility with the ECS and original Amiga chip sets.

Ultimately, Commodore needed a test system for these new chips, and so they
naturally assigned Dave Haynie to the project. Not satisfied to just build
an "AA3000", Dave looking into building an all-around better system which
included the new chipset.

In February of 1991, the first A3000+ booted up Workbench. The new chips
ran the existing AmigaOS almost without incident. In addition to the AA
chips, this first 3000+ had a digital signal processor, the AT&T DSP3210,
built in as a local bus coprocessor. The DSP3210 and the Amiga were a match
made in heaven. The 3210 was a local bus master, allowing for DSP systems
to be built without the expensive and limiting SRAM of earlier designs. The
3210, at 50MHz, crunched 32-bit floating point at up to 25MFLOPS, five
times faster than the 68040. AT&T has a full fledged, multitasking,
multiprocessing DSP operating system for the 3210, which used an arbitrary
general purpose OS as a host. The Amiga’s low overhead, near realtime OS
was a perfect mate for AT&T’s VCOS.

Of course, prototypes will be prototyes, and the DSP never worked on the
Rev 0 edition of the A3000+. But everything else did. For Rev 1, a very
extensive DSP audio system was put into place, including hardware CODECs
for 16-bit stereo I/O at up to 48kHz and phase-correcting
telecommunications, for V32 modems.

After Rev 1, Commodore Engineering management was changed by the then
president of Commmodore International,

Mehdi Ali
. The new VP of

engineering, Bill Sydnes, was opposed to the A3000+, and virtually every
other project underway at the time -- no use making the previous
administration (the folks who brought you the A500, A2000, and A3000) look
good. The final revision of the Amiga 3000+ was a scaled down version, as
mandated by the administration. A flaw in some custom DSP support logic,
built into the new A3000-architecture DMAC chip, made the DSP a problem.

The DSP lived on for awhile, despite management. Dave Haynie worked on his
own time to get systems reworked, and work out any additional bugs, in the
DSP hardware. Jeff Porter, onetime Director of New Product Development and
the other driving force behind the DSP, managed to keep the software
development funded. Eric Lavitsky, DSP expert, consultant, and longtime
Amiga supporter, did the actual VCOS port. This port was, in fact finished.

And the DSP had a kind of afterlife. After Bill Sydnes was fired, Lew
Eggebrecht took over Commodore Engineering. While not an amazing leader,
Lew did turn a number of projects on that were floundering as skunkworks
efforts necessarily hidden from Sydnes. Dave had proposed a DSP board be
made for Zorro III, and Lew put two engineers on it full time. Although
Commodore never built the resulting board, the design was nearly complete,
and it was build by a company that licensed the design before Commodore
went under.

DiskSalv 5 / 98

1.4 nyx

The most advanced project ever attempted at Commodore was the creation of
the Advanced Amiga Architecture, or AAA. Started in the late 80’s, AAA was
an effort to build a new Amiga architecture that was once again head and
shoulders above the mainstream. AAA was a major advance. It would deliver
32 and 64-bit systems, using DRAM or VRAM. Many new graphics modes were
supported, including 24-bit, HAM10, and compresses 8 and 24-bit modes. The
blitter and copper were fully 32-bit, and the copper could feed the
blitter. Graphic resolution went up to 1280x1024 noninterlaced, and the
pixel clock could change on a line-by-line basis, to support hardware
promotion of older screen modes. Audio was extended to 8 channels, with
sampling rates up to 100kHz at 16bits/sample. The floppy disk interface was
fast enough for 4MB floppies, 150KB/s CD-ROMs, Digital Radio, and other
serial streams, and decoding could be done on-chip or in software.

In 1992 Dave Haynie designed the "Nyx" prototype, which was the first home
for the AAA chips. Based on the A3000 architecture and lots of programmable
logic, three working systems were built. When Commodore stopped funding the
AAA project, critical chip revisions had been released to tape, but not yet
made. The existing AAA chips delivered 24 bit graphics at high resolution,
demos set up the copper feeding the blitter, doing CPU-less animations. The
next rev was supposed be enough to boot the AmigaOS.

1.5 deathbed.vigil

The Deathbed Vigil and other tales of digital angst
by Dave Haynie

Set the way-back machine for April, 1994. Everyone was worried about the
continued existence of Commodore. I had been away, interviewing for new
jobs in Texas, so I came in, first time that week, on Tuesday, April 26,
1994. Rumors were running rampant about a bigtime layoff happening the next
day. We in Engineering had already been on a major league skeleton crew
since the summer of 1993, so this was clearly a sign of the beginning of
the end.

So, when I woke up Wednesday, not knowing with any certainty if I’d have a
job to go to tomorrow, I thought about videotaping Commodore. After all,
this whole Amiga thing, which ran far beyond Commodore, the Amiga
community, nearly all my active interpersonal relationships, and in some
sense, the last vestige of the real small computer industry; once full of
excitement and new ideas, but by this time more concerned with perpetuating
and recreating obsolete, "best of the 70s, as long as UNIX isn’t
considered" computing. It was one of those ideas you think about, say "hey,
wouldn’t thi be cool", but then dismiss as soon as there’s an obsticle.

So I set out to do some taping. Fortunately, I had three batteries charged
for my Sony TR-7 8mm camcorder; recharged after my trip to Texas. And
fortunately, K-Mart had blank 8mm tapes for sale. So I went to Commodore,
and proceeded to do a walk-around of the Commodore building.

Pretty early on, it was clear that the layoff was happening. All but about
30 people were layed off; I was one of the "still employed", it was less

DiskSalv 6 / 98

clear who the lucky ones were. At lunchtime, we went to our Mexican place,
Margarita’s, for the last big layoff party. There, many things were said
about the Commodore management, some of it on-camera.

At the layoff party, Randell Jesup told me of a "Deathbed Vigil" party that
he and Bryce Nesbitt were throwing, on Saturday. When Commodore bought
Amiga, the good folks at the original Amiga company in Los Gatos, CA, held
an "Amiga Wake" party. This proved premature, if in retrospect technically
correct; Randell didn’t want to make the same mistake. So I filmed the
party, where all kinds of cool things took place: interviews, tales of the
golden and not-so-golden years of Commmodore-Amiga, a burning of the L.B.M.
effigy (some associate this with ex-President of Commodore, Mehdi Ali),
smashing of keyboards, the "Chicken Lips Blues" song (performed by Mike
Rivers, written by attendees), and other great events. Some strange
happenings, post-party, were also filmed at Commodore.

Once done, I had to figure out what to do with this 4-5 hours of video. I
decided to make a real, for sale videotape, and to try to tell a bit of the
story of What Went Wrong, along with the antics, anger, info, and catharsis
of this time. I realized I wanted to have on tape some small piece of this
amazing thing I had been involved with for 10 years, and I figured fans of
the Amiga might want a look too. So I set out to really make my first film.

And along the way, I decided I wanted to know: is Desktop Video real. I
never did any video stuff at Commodore. So I wanted to know, could a novice
videomake sit down with a consumer camcorder and deck, an Amiga, some plug
ins and the right software, and actually make a good video. So I put
together my system, including:

Amiga 3000+
prototype

Scala MM300 authoring system (provided by Scala)
Scala EE100 LANC/IR controller (provided by Scala)
SuperGen 2000 (borrowed)
GVP TBCplus (borrowed)
JVC HR6900 SVHS deck (paid in cash)
Deluxe Paint IV

Over the course of four months, I put together the video. I added various
bits of information gleaned from conversations with past and present
Commodore employees, and other folks "in the know". Mike Rivers provided me
with some original music, and I wrote lyrics to one of his songs, which I
affectionately entitled "F.Y.M.". We drank beer, mixed it, and I became a
Rock Icon. NOT. Anyway, if you like the Amiga, and want some idea of what
went wrong, you can still order "The Deathbed Vigil and other tales of
digital angst" from

Intangible Assets Manufacturing
.

1.6 cool.projects

There seems to be a general feeling in the Amiga community that ←↩
Commodore’s

engineering teams spent years developing Really Amazing Things, only to

DiskSalv 7 / 98

have Marketing deep-six them on the verge of production. This does
occasionally happen; the

A3000+
is a good example of this. What was more

often the case, though, were projects done on the side, "skunkworks"
projects, if you will, that were often cool, but didn’t get very far, due
to varying management support, available funding, and the amount of
"copious spare time" available to the project’s owner.

A few of Dave Haynie’s less successful projects, over the years, included:

A2630 This one actually made it out the door. For six
months, it was a funded skunkworks project. Nearly
overnight, it became A Real Product.

BIGRAM A 16MB board for the A2630. Two were built. Hey, in
1988, 16MB was lots of memory.

FASTRAM An 8MB board with fast page support for the A2630.
As it turned out, this was a bit too complex to do
in PAL logic at the required speeds, but it was a
good design exercise.

BIGRAMZ3 This was done in about two weeks, start to finish,
as a Zorro III design example for the 1991 DevCons.
This is a 64MB Zorro III memory card that supports
Zorro III burst. It benchmarkst at about 80% the
speed of local bus memory, a fairly impressive
accomplishment given the less-than-ideal Zorro III
interface of the A3000 architecture. About four of
these exist.

A2631 After the A3000 went out, Commodore was still,
strangely enough, shipping lots of A2500/30s.
Certain niches wanted the larger box of the A2000.
Every A2500 got an A2630 and A2091 board. One
Friday, over beer and Mexican food, Dave Haynie and
Greg Berlin got the idea that this was stupid, in
the light of the A3000 architecture. So the next
week, Dave cranked out a replacement, based on the
A3000 architecture, which we called the A2631.
This was an A2000 CPU socket board with Buster,
RAMSEY, the DMAC and SCSI chip, 68030, and 68882.
It cost less than the A2630, delivered high
performance SCSI, and could take 16MB of RAM.
Management wasn’t interested, even though it would
have saved money. Two prototype boards were built.

Gemini This was a multiprocessing board, designed to test
and stress the features of the Level II Buster chip
(Rev 8 and beyond). The problem with inventing your
own expansion bus is that you have to build
everything for it. So for fun, this board did
something interesting; it had two 68030s, each with
4MB of RAM and independent Zorro III access. Two of
these were built, but the project resources were
pulled before it was debugged. Had it been

DiskSalv 8 / 98

developed fully, this could easily have helped to
debug the Buster chip before the A4000 shipped.

Acutiator Only a paper design, Acutiator was an effort to
specify a whole new system-level architecture,
replacing the A3000 architecture used in all A3000
and A4000 systems. The goal was a cost efficient,
high performance architecture that could deliver
anything from midrange systems (about midway
between A4000 and A1200) on up to fully
professional Amiga system heretofor nonexistent.
Haynie originally designed a new "Amiga Modular
Interconnect" bus, but adopted the fairly similar
PCI bus once it was announced. The main idea was to
make "highly modular" Amiga systems, wherein the
system board design was independent of CPU or
graphics subsystems. A small amount of design work
had been done on this, but it was largely ignored
by management.

SCARAB The SCARAB board, the last thing Haynie worked on
at Commodore, was an effort to build a high
performance graphics card based on off-the-shelf
SVGA chips. The card ran a PCI bus locally, with
bridged to Zorro III and to the video slot. With
the video slot interface, Amiga chip graphics could
be converted, in realtime, to PCI cycles,
which wrote the SVGA graphic memory, in a window
controlled by SCARAB registers. In essence, this
was a programable "flickerFixer" that could handle
any scan rate. The board could also support
"hybrid" graphics modes, where in the Amiga chips
were still used, but went into a very slow scan
mode, so they could put out 1024x768 at 8 bits in
slowscan, which would be converted to 72Hz
noninterlaced by SCARAB (this is somewhat like
"Hedley hires", an easy addition to the AmigaOS).
RTG drivers would ultimately hit the board,
directly, over Zorro III. Lots of design work went
into this, but it became pretty clear there was no
money left to actually build any of it.

1.7 schatztruhe

DiskSalv 3 is published in the German language by Stefan Ossowski’s
Schatztruhe:

Stefan Ossowski’s Schatztruhe
Gellschaft fur Software mbH
Veronikastr. 33
45131 Essen
Germany

Telefon 02 01/78 87 78

DiskSalv 9 / 98

Telefax 02 01/79 84 47

1.8 iam

DiskSalv 3 is published in the English language by Intangible Assets
Manufacturing:

Intangible Assets Manufacturing
828 Ormond Avenue
Drexel Hill, PA 19026-2001
USA

For information on IAM products, etc.

email: info@iam.com
web: http:://www.iam.com

1.9 whatsnew

The crash-on-exit bug in Version 12.16/12.17 has been eliminated.

The fix-in-place routines have been enhanced. The result of this is
that directories with problems are much more likely to be fixed,
rather than eliminated. DiskSalv’s ability to deal with various kinds
of bad blocks linked into the active disk partition is also much
improved.

New startup and stack extension code solves stack overrun problems
completely. This may have some small effect on performance, but it
should eliminate at least half of the problems folks have been having
with DiskSalv.

A new command option,
SKIPDEVS
, has been added. This is used to keep

DiskSalv from examining specific DOS devices.

What was new:

Version 12.16/12.17

1.10 version1617

Big improvements to the DiskSalv.guide file.

Full support of AmigaOS 2.1. Previously, bugs in the V34 version of
the AmigaGuide.library, both in DiskSalv’s calling conventions and the
aspects of DiskSalv.guide format, caused the on-line manual to be
unusable in most 2.1 installations. A workaround for the V34 function

DiskSalv 10 / 98

bugs, coupled with reformatting of this guide file, makes 2.1
conventions work.

Added additional device checks have been added in the device listing
routines. This is designed to eliminate Enforcer hits when DS3 is run
on systems with certain devices, like NFS volumes, that were confusing
it before.

Many recursive routines rewritten to use much less stack, and in some
cases, less memory all around.

The output window wasn’t being built properly after a "quick" scan; it
was basing itself on the existing size of the window. Now it uses the
predefined maximum window size.

Improved the block reference checks in the fix-in-place routine. This
improves the ability of DiskSalv to flag bogus disk block number
references.

Fixed a bug in the Best-Guess analysis that could cause no guess to be
made. This could result in a volume being labelled "BEST", and no
proper analysis being run. This last effect was a side effect of a
missing test on the setup window, which determines when a disk scan
run is safe.

Improvements to the input window better support NON-DOS devices, and
now properly prevent DiskSalv from running until a proper file system
is set by the user, in the event a possibly-valid alternate file
system is found on the disk (MS-DOS, alternate AmigaDOS file systems,
etc.).

1.11 dsforward

The DiskSalv Story

A little over nine years ago, I got my first AmigaDOS disk error. I was
writing some program or another for my brand new Amiga 1000, when the disk
failed. It was, of course, my only copy of this masterwork, and I needed it
back at all costs.

Much has been said at the time of just how robust the Amiga
file system
was. So the next day, I went over to the Software department at ←↩

Commodore
to get their disk repair tool and get back to work on my great new thing.
Much to my dismay, there was no disk repair program. I left with a copy of
something called DiskEd which might help.

Some time later, the original intent nearly forgotten, I released a program
called DiskSalv V0.9, which soon became popular in the small but growing
Amiga community. It could handle any

device
, as long as it was floppy

unit 0, 1, 2, or 3. Even Commodore’s CATS group used it, as
DiskDoctor

DiskSalv 11 / 98

was still in the works, and couldn’t legally be given out, even in
prototype form. Over the years, DiskSalv 1 grew to support arbitrary
AmigaDOS devices and much more sophisticated recovery methods.

Moving to DiskSalv 2

At the end of 1989, I started working on a full upgrade of DiskSalv. This
program would use Intuition to ease user interaction. As time went on, the
program grew, and so did the complications, as more and more things I
attempted could not be done easily or cleanly in the AmigaOS 1.3 system.

By December of 1991, the 2.04 operating system was being finalized, and I
had committed DiskSalv to 2.x-only operation. In June of 1993, I released
DiskSalv 2, which provided much more sophisticated scanning routines,
fix-in-place modes, and an AmigaOS 2.x compliant Intuition driven user
interface, based on the evolving Amiga style guidelines. It was one of the
first programs to support both Localization and AmigaGuide, though I never
finished a guide for it. It also supported all AmigaDOS

file systems
,

six different types at that time. Several releases later, DiskSalv 2 is
quite stable, and continues to receive small enhancements.

And Finally, DiskSalv 3

Which brings me to DiskSalv 3. When I released DiskSalv 2, it was already
rather apparent that a sophisticated GUI-driven program required better
documentation that I could provide in a simple ReadMe file. I had
originally intended, and offered, to provide a printed manual for DiskSalv
2. As I went through the feedback from the first DiskSalv 2 releases, I
developed many of the enhancement ideas I had been holding back on to get
DiskSalv 2 out the door. I decided then that rather than just offer a
semi-commercial manual for DiskSalv 2, I would offer a complete program
upgrade for the same price.

The first release of that is what you have before you. It incorporates a
number of ideas in GUI and disk repair I couldn’t or didn’t offer in
DiskSalv 2. I will continue to update DiskSalv 2, but my emphasis from now
on will be on improving DiskSalv 3. Many new features are already in the
works. Some are even fairly well developed, but left out of this initial
release, which is already at least three months later than I had hoped.

DiskSalv 1 and, for the most part, DiskSalv 2, were programs you hoped
never to need. DiskSalv 3 is one you may use more often, as it adds
prevention to the cure of the previous releases.

-Dave Haynie

April 20, 1995

1.12 intro

DiskSalv is a disk recovery program. Its main purpose is to ←↩
recover

DiskSalv 12 / 98

AmigaDOS disk integrity when a disk fails, or when impossible, the data
from a failed disk. The name DiskSalv is short for Disk Salvage.
Originally, DiskSalv’s only function was to extract as much data from a
failed disk as possible and copy this information to another disk.

DiskSalv 3 has extended this function in various ways. It can recover
deleted files from an undamaged disk, which is often a more common need
than failure recovery. In many cases, DiskSalv can fix a damaged disk
in-place, rather than copy out its contents to another

volume
. In

these days of multi-gigabyte hard disk drives, that’s an important concern.

Finally, DiskSalv 3 adds a number of related features. It can find

partitions
on a disk, even when AmigaDOS can’t. It can report errors

on a disk without repairing them for you. It can backup an AmigaDOS
volume
to any AmigaDOS disk or tape device.

Topics:

Why Good Disks Go Bad

Why Doesn’t AmigaDOS Fix Errors?

How DiskSalv Can Help?

Installing DiskSalv

A Quick Start

Common Disk Problems

Commercial Versus Shareware

1.13 goesbad

The AmigaDOS
file systems
are not very tolerant of even small defects

in a disk’s format, and will reject damaged disks. There are a number of
things that can cause problems with a disk. Physical damage is perhaps the
most obvious, and the worst kind. Fortunately, this is common only on
floppy disks. Mechanical abuse, magnetic contamination, or just prolonged
wear can cause physical errors on a floppy disk. Hard disks can fail in the
same way, though they last much longer and aren’t normally subject to
drops, coffee spills, or other physical damage. Physical errors are called

hard errors
.

Much more common, especially on hard disks, are
soft errors

DiskSalv 13 / 98

. A
soft error
is any disruption in the file structure of a disk that is not due ←↩

to
physical damage. DiskSalv can very effectively deal with such errors.

1.14 notfix

On the Amiga, a program called the
file system
is responsible for

communication between the Amiga’s DOS Library (eg, the Amiga’s Disk
Operating System core) and the

device driver
program, which serves

to abstract the function of any specific disk management hardware. Disks
appear in many forms. Some are addressed via high-level (e.g., logically
mapped) protocols such as the SCSI (Small Computer System Interface) or the
IDE (Integrated Drive Electronics) protocol. Others may be supported at a
lower level, addressed in terms of block, sector, and offset. Still others
may exist only as an area of memory. The device driver allows any disk to
be addressed as a linear array of disk blocks, and the file system only
needs to work in these terms.

The file system is reasonably good at detecting errors. It maintains a
bitmap of disk blocks it has used, and a flag that indicates if this bitmap
is valid or not. Before making any changes to the disk structure, the file
system marks the bitmap as invalid. It then make the requested changes, and
finally, marks the bitmap valid again. If an error of any type, be it hard
or soft, occurs during a modification, the bitmap will still be marked as
invalid the next time the file system starts up.

The file system uses this condition to launch a routine called the disk
validator. If AmigaDOS is running this on one your

partitions
, the Info

command will report Validating for that
partition
. During the validation

process, the file system checks out every object that can be reached by
walking the disk structure from the disk’s root block. As long as no bad
blocks are found here, a new bitmap can be constructed. If a bad block is
found, it must be considered unsafe to allow any more writes to that disk
until the problem is resolved.

In most cases, the file system can do nothing to fix the problem, so it
simply sets the volume to read-only, in cases of small damage, or NDOS (not
understood by AmigaDOS) if the volume doesn’t make any sense. It is
considered beyond the scope of the file system to do much more than this.
It would certainly be possible for the file system to be as clever as
DiskSalv or other disk repair utilities, but there’s no good reason for
this. There is no advantage in locating sophisticated repair functions in
the file system. The disadvantage, among others, is size: the file system
is roughly 25K in size, while DiskSalv 2 is currently almost 120K, while
DiskSalv 3 is approaching 200K. Even without a full GUI and with assembly

DiskSalv 14 / 98

language downcoding, this would be a memory burden.

Most operating systems include a disk repair tool of some kind, though
these tend to be rather simplistic. A program called

DiskDoctor
was once

included with the Amiga Operating System, but it had a number of problems,
and was generally less than reliable.

1.15 canhelp

DiskSalv is designed to analyze a troubled disk and attempt a fix. ←↩
For

every operation, it builds a consistent model of the disk in memory, and
then uses that model to salvage the disk. DiskSalv can do something for any
kind of error, and in many cases it can completely restore the disk to
working order. The success depends on what happened to the disk, of course.
When a disk or file can’t be repaired, DiskSalv can still attempt to
restore the data to another

volume
.

Topics:

The Fix-in-Place Concept

Where are my bad files?

The Recover-by-Copy Concept

1.16 intro.fixinplace

The most desirable result of a DiskSalv run is the complete ←↩
restoration of

a troubled disk. Ideally, the trouble is not severe and can be fixed
without the need for anything to be eliminated from the disk. While this is
certainly possible, this isn’t always the case. There are times when
DiskSalv must eliminate a file or, rarely, an entire directory, in order to
correct a disk’s structure. And on occasion, a disk may not be restorable
at all.

In most cases
, though, DiskSalv can restore a disk.

Hard errors present the most trouble, since there is little a piece of
software can do to correct a hardware problem. It may be able to work
around it, though, depending on the location of the error. A less critical
hard error will occur within a file. DiskSalv can restore the disk to
read/write status by removing the file from the active disk structure. A
hard error in a directory or other disk structure management block may be
impossible to get around, since the block would have to itself be modified
to fix the disk’s structure.

DiskSalv 15 / 98

Even if DiskSalv does fix a disk containing a hard error, the error will
eventually come back, since it’s a physical flaw in the disk. At present,
DiskSalv won’t be able to do much about this problem. The next release of
DiskSalv 3 contains a disk block mapping capability which can map out bad
blocks on most kinds of disks.

Soft errors
can be perfectly fixed as long as there’s enough of the disk

structure left after the crash to make the disk still viable. At the worst,
a file may have to be eliminated to fix a

soft error
.

DiskSalv does not attempt to repair the structure of a file itself
in-place, but it will allow such faulty files to be recovered as intact as
possible to another disk

volume
.

A directory can be completely reconstructed from DiskSalv’s internal disk
model. DiskSalv will only need to eliminate a directory if it contains a

hard error
.

1.17 intro.wherebadfiles

As mentioned, DiskSalv’s fix-in-place routines are designed to repair
a disk’s logical partition, such that the partition’s file system can
be safely run on the partition. Occasionally, there will be file
eliminated in order to make this possible -- when DiskSalv eliminates
the cause of a file system validator hangup, the validator should be
able to do its job.

When files are eliminated, DiskSalv would like to offer them to you,
in the DiskSalv file browser, giving you the option to salvage them to
another volume. On occasion, though, you may not see the files you’re
expecting to see. This is due to the nature of the Amiga file system
and the kinds of errors that take place. If the error is in a specific
file, this file can be explicitly eliminated, and shown in the list.
However, if the parent directory of file damaged, it may not list that
file in its contents. In this case, Repair will not attempt to recover
that file, it will appear to Repair as a deleted file.

After a Repair run, such files can still be obtained. Using the
Salvage or Undelete functions, these files can be found and restored
to another volume. If there are an excessive number of them, run the
Unformat function. This performs a global Undelete on everything on
the disk, though it can bring back lots of things that are not needed
as well as the missing things that are important.

DiskSalv 16 / 98

1.18 intro.recoverbycopy

When DiskSalv can’t fix a file, directory, or entire disk in-place ←↩
, it

offers the user an option called "recover-by-copy". DiskSalv never actually
erases a file unless instructed to, via

Cleanup
mode. When a

fix-in-place
operation can’t fix an object, that object is simply eliminated ←↩

from its
parent directory, it is never actually removed from disk. Some DiskSalv
modes also intentionally do not attempt any modification of the input disk.

In a recover-by-copy operation, the user selects an output
device
that’s

different than the input device. This can be another hard disk, a series of
floppy disks, a RAM disk, a disk-based file, or magnetic tape, or any other
AmigaDOS device. In essence, a recover-by-copy operation works like a copy
or back-up function, except that it uses a specialized set of routines
designed to extract data from a potentially faulty disk. Anyone familiar
with DiskSalv 1 will recognize this as the only recovery mode supported in
that program.

Whether a recover-by-copy mode was explicitly selected by mode, or forced
as the result of something being eliminated during a

fix-in-place
run,

the Output routines in DiskSalv allow the user to select the files that
will actually be restored, as well as the output device they will be
written to. The output can be written according to the AmigaDOS file
structure, as long as the output device support it, or in the DiskSalv
archival format, which can be written to any AmigaDOS device.

1.19 install

DiskSalv 3 is easily installed anywhere on a hard disk or floppy ←↩
disk. It

doesn’t require any support files, though it does support several, notably
this DiskSalv.guide file for on-line hypertext help linked to DiskSalv.

Topics:

From the Workbench

From the Command Line Shell

Common Installation Problems

1.20 install.wb

DiskSalv 17 / 98

The DiskSalv 3 distribution disk is set up for easy Workbench ←↩
installation.

Simply click on the Install icon to install everything in its proper place
on a hard disk. This uses the standard Amiga installer program for the
installation, which should be familiar to most users by now.

It’s also a good idea to put the DiskSalv 3 executable and
support files
on a bootable floppy disk. This should be labeled DiskSalv 3 Boot, ←↩

or
perhaps Don’t Panic, put in a safe place. Should a disk error of some kind
ever damage your hard disk to the point of it not being bootable, such a
disk can be a lifesaver. The MakeBoot script builds just such a disk. It
copies necessary files from both the DiskSalv 3 distribution disk and your
system disk to make this bootable floppy.

Please make certain that your boot time OS is the one installed. If your
system come up in another OS, you make need a second disk to install the
current version before the DiskSalv boot disk will function. For example,
I have 2.04 ROMs on my Amiga 3000, but it boots AmigaDOS 3.1 on startup via
Nic Wilson’s Set040 program. I would need to create a 2.04 version of the
DiskSalv boot disk or I would need a disk to boot my system into 3.1 before
using a 3.1-based DiskSalv boot disk. Amiga 3000 owners who use
SuperKickStart already have such disks for their systems in most cases.

1.21 install.shell

Expert users may prefer to install DiskSalv manually from their ←↩
favorite

command line shell program. This will just take a couple of seconds. In
most cases, you simply need to pick a target directory and copy DiskSalv,
DiskSalv.info, and DiskSalv.guide from the distribution disk. It’s not
necessary to copy the .info or

support files
, but both are useful in

most installations. The DiskSalv.guide file can be located in the same
directory as DiskSalv or along the AmigaGuide HELP path, if one exists.

1.22 install.problems

DiskSalv installation should be very straightforward. While the ←↩
program can

use some of the optional features of AmigaOS 2.1 or 3.0, it only requires
AmigaOS 2.04. It will run on 512K systems, but it will require more

memory
to process large disks. Similarly, it will run with as little

as 4096 bytes of program stack (the Amiga OS default), but more is
suggested for processing large disks. The DiskSalv 3 icon sets a default of
20K for the stack, which should be enough for all but the largest disks.

DiskSalv 18 / 98

If DiskSalv refuses to start up probably, a couple of things should be
checked. Make sure the Workbench screen, or public screen you have assigned
to DiskSalv, is at least 640x200 in size. Also make certain that the topaz
8 font is available (it’s usually in ROM). DiskSalv attempts to adjust to
the system’s default font, but will drop back to topaz 8 if necessary.

1.23 quickstart

If you are interested in learning all everything written about ←↩
DiskSalv, I

recommend reading the rest of this manual. If, rather, you’re interested in
fixing a problem disk as soon as possible, the rest of this section may
help you get going without an extensive knowledge of DiskSalv. Help is
available by pressing the HELP key over any gadget or menu item.

Topics:

The Setup Window

The Scan Window

The Output Window

1.24 quick.setup

The DiskSalv program is started simply from the Workbench or ←↩
command line.

An introduction screen will be displayed, presenting the program version,
release, and copyright information. Click on the Begin gadget or
double-click the right mouse button to get the

Input window
, which is

where DiskSalv always starts.

The
Input window
is where DiskSalv is set to a particular mode and

given a disk to work with. In most cases, it’s simplest just to drag the
icon from your problem disk into the Input window, though the

device
can be selected via a requester instead, by clicking on the Device ←↩

list
gadget. DiskSalv will automatically select the best

file system
for

processing. If you’re absolutely certain DiskSalv has selected this
incorrectly, the file system can be changed via the file system requester,
by clicking on the File System list gadget. An aborted format attempt may
cause file system types to be incorrect, but they rarely are otherwise.
Selecting the wrong type can cause damage to the input disk’s data.

The next step is to select the

DiskSalv 19 / 98

Major Mode
. The Salvage mode runs a basic

recover-by-copy
operation. It will allow any file on the input

disk to be copied to an output disk as completely as possible. The
Undelete mode runs a

recover-by-copy
operation, but will only list

files that are deleted. The Repair mode is the basic
fix-in-place
function. Use this to fix a disk with any kind of error reported ←↩

on it.
Finally, the Unformat mode is used to reverse the effect of a Format Quick
or an aborted full Format, as completely as possible.

1.25 quick.scan

Once the
device
and mode have been selected, the disk must be

scanned. This is the process by which DiskSalv builds a model of the input
device, activated by pressing the Scan gadget on the

input window
.

This causes a switch to the
scan
window. This window presents an

ongoing display of the scanner’s findings, including a count of objects
encountered, a status gauge, and an item-by-item display of each
significant object encountered. Several different scanning phases may be
invoked as a part of each mode; the

fix-in-place
operation can

comprise as many as seven passes. A scanner run can take a minute or so on
a small disk drive, many minutes or even longer on a large drive. The
scanner display can be paused at any time, or stopped completely. It may
take some time to actually perform a stop operation, since DiskSalv will
not allow the scan to stop with a

fix-in-place
operation partially

complete.

1.26 quick.output

As long as a
fix-in-place
mode is selected and no identifiable

DOS objects must be removed from disk in order to fix it properly, the
scanner will terminate and offer the user a choice of going back to the

input window

DiskSalv 20 / 98

for a new device or quitting DiskSalv altogether. If a

fix-in-place
mode must delete something recognizable as a file or

directory, or a
recover-by-copy
mode is selected, DiskSalv will open

the Output window once a scan has completed.

The primary feature of the output window is a pair of file list requesters.
The requester on the left lists the directory structure obtained during the
scan, while the requester on the right lists the files belonging to the
current directory. When the output window comes up, nothing has been
selected and the root directory is current, indicated by normal listview
highlighting. Clicking on a directory name makes it current and displays
any files it may contain, while clicking on a file selects that file for
restoration. There are various options available for manipulating these
objects; the most important is the set gadget, which selects the current
object and, in the case of the directory requester, all of its children.

Once at least one file or directory has been selected, the output device is
specified. This can be typed into the Output string requester, or selected
via the file requester brought up by clicking on the Output list gadget.
DiskSalv can rebuild part or all of a disk’s structure on any file-oriented

AmigaDOS device
.

1.27 problems

While there are many problems that can disturb a disk structure, ←↩
most of

them seem to be pretty rare, fortunately. Of the errors that do occur, a
couple of common types stand out. Most of these problems can be solved by
the casual DiskSalv user, though a few require a bit more knowledge to
properly address.

Topics:

Checksum Error

Key Already Set

Not a DOS Disk

Can’t Find Volume

Can’t Find Device

1.28 prob.error

DiskSalv 21 / 98

One common disk error reported by the
file system
is a Checksum error.

Directory, file, and other disk management blocks contain a 32-bit checksum
field. This is a number selected to cause the sum of all longwords in a
block to result zero. If for some reason, the file system detects a block
that doesn’t sum to zero, it will make that disk read-only and notify the
user.

It’s very unlikely that the file system would incorrectly calculate such a
checksum. Still, a checksum could be incorrect on disk for most any hard
error, or any situation that causes a disk block to be somehow miswritten.
DiskSalv’s Repair mode will nearly always solve this kind of problem.
Fixing this can result in a file being removed, but will never not result
in a directory elimination unless there’s a

hard error
detected.

1.29 prob.key

Another common error, Key Already Set indicates that the
file system
has somehow allocated the same block, or key in
Tripos
parlance, for

two different objects. This usually occurs when a directory or file header
block is incorrectly updated, so it references the wrong block as a child
or contents block. This can also happen if a disk block goes slightly bad
due to a hardware problem, though this is usually caught as a checksum
error instead. DiskSalv’s Repair mode can fix this condition by
eliminating one of the two objects referencing the block. It is generally
possible to tell which object is the proper owner of any particular block.

1.30 prob.ndos

A more severe crash can result in a "Not a DOS Disk" message, ←↩
which

indicates that the Amiga
file system
can not recognize a

partition
as a

valid AmigaDOS partition. This condition may simply be a matter of luck
more than anything else. A crash that affects a file or a subdirectory
block may not be fixed by AmigaDOS, but the disk will usually be recognized
by AmigaDOS, though it will be created as a read-only disk (the file system
wisely prevents modifications to a troubled disk). The same disk crash on a
disk’s

root bock
or initial block will confuse AmigaDOS. Without

the ability to process a disk, AmigaDOS marks it as NDOS. Of course,

DiskSalv 22 / 98

hard errors
or other other physical problems can cause this

too, and generally can’t be helped by DiskSalv.

DiskSalv can usually solve this kind of problem, too, using Repair mode. If
the problem is with the disk’s

root block
, DiskSalv can reconstruct that

root based on the results of a full scan of the disk. If the problem is
some damage to the disk’s reserved area, DiskSalv may not be able to
quickly determine the disk’s DOS type. The AmigaDOS file system stores a
disk’s DOS type (Original File System, Fast File System, etc.) as a code in
the first reserved block. DiskSalv can use the

Best-Guess
option in the

file system requester rather than a specific file system to determine the
DOS type automatically.

1.31 prob.novol

This is much like the "Not a DOS Disk" problem. In AmigaDOS, every

partition
can be referred by either

volume
or

device
name. A device name, such as DF0:, DH0:, etc. is usually set up at ←↩

boot
time, before AmigaDOS has initialized the disk. AmigaDOS device names
depend on the configuration of the Amiga system you’re using. The volume
name is read from the disk, and depends on the disk itself. The floppy
drive is generally called DF0:, but it may contain volumes such as
Workbench: or DiskSalv3: from time to time. When a volume name can’t be
found, that’s an indication that there may be a significant problem with
the disk, the same kind of problem that causes "Not a DOS Disk" problem.
The Repair mode is suggested for this too.

1.32 prob.nodev

In the most severe failures, the
DOS device
designator for a volume

is not present. This can only happen for automounted hard disk and similar
devices that follow the Amiga Rigid Disk Block standard (

RDB
). RDB

is a convention followed by nearly every Amiga hard disk device that stores
disk partitioning information in a standard way. This allows partitions to
be automounted at boot time, and makes it very easy for disks to travel
between different systems, even if they use different makes of hard disk

DiskSalv 23 / 98

controller.

The down side to this, of course, is that the disk partitioning information
is contained on the disk. Any force that can cause a disk crash on a a file
or directory block can damage the RDB area, though since it’s a small area,
this isn’t all that likely. Still, if it does happen, you’re in more
trouble than usual, since without the RDB, there is no description of a
partition for DiskSalv to work from.

DiskSalv can, however, help you out here too. This is a more complicated
process, and it’s not a bad idea to read about the

Device Analysis
function and the
Device Editor
at this point for more information

on the device editor. Simply put, you want to run the device analysis
function, which is called up from the

input window
by clicking

on the analysis button.

The Analysis window uses the Device Editor to let you specify the disk to
search. This requires entry of the Exec-level device and unit to search, as
well as some other physical information. If you have other partitions on
the same physical disk, dragging any one of them into the Analysis window
will fill in these parameters automatically. Press the

Analyze
button

to start a scan of the disk. DiskSalv will construct an internal
representation of any volume it finds. These will show up by the volume
name of the partition as found. DiskSalv does not support all modes on such
partitions, as some are only meaningful when DOS is active on the
partitions. In many cases, only the RDB itself is damaged. DiskSalv can
write any partition data to disk in Mount form with the

Save Device
function, or to the RDB with the
Save to RDB
function.

Such files can be mounted with the AmigaDOS Mount command with little or no
modification. Some Rigid Disk Block editors, such as RDPrep from
MicroBotics, Inc. can convert between mountlist and RDBs. The next release
of DiskSalv 3 will also allow this to be written directly to RDB.

1.33 giveitaway

The DiskSalv 3 program is copyrighted, commercially distributed software,
and absolutely must not be given away, copied, modified, or otherwise
mistreated. The success of DiskSalv 3 today determines the future of the
program.

However, as long as it will reasonably fit, the DiskSalv 3 distribution
disk will contains the current DiskSalv 2 distribution, in archived form.
DiskSalv 2 may be given away, uploaded, copied, etc. on a not-for-profit
basis. In fact, I encourage this. Only the materials in the DiskSalv2

DiskSalv 24 / 98

directory may be freely redistributed.

1.34 2304

Immediately after the introduction window, DiskSalv’s Input Window ←↩
will

come up. This is the main DiskSalv window. Every DiskSalv operation will
ultimately return here when complete, unless the user chooses to quit
DiskSalv. As the name implies, this window manages forms of input to
DiskSalv. The user must specify at least two things to DiskSalv: an input
device, and a mode of operation. Options may be selected, but are not
necessary in most cases. Once the input setup is compete, the disk salvage
operation begins with a press of the Scan button.

Various secondary operations can be launched from the input window via menu
items or function buttons. There are a number of these secondary functions
available, most of which support options related to the

Major Modes
or

several kinds of device management.

Topics:

Device Setup

Major Mode

Button Options

Project Menu

Settings Menu

1.35 devicesetup

There are three components to a DiskSalv device selection. The ←↩
primary

component is the device itself. Every device has one of the AmigaDOS file
system format types, which must be correctly entered. Finally, many modes
support a

pattern
, which can be used to place a set of constraints on

which disk objects will be processed by DiskSalv during the selected
operation.

Topics:

Device Selection

File System Selection

Pattern Selection

DiskSalv 25 / 98

1.36 2200

An Input Device must be selected for any
Major Mode
operation. The

Scan button will be ghosted until such a device has been selected. Device
selection can be made simply by dragging and dropping a disk icon into
DiskSalv’s

input window
. Alternately, the user can click on the "Device:"

gadget. This brings up a list requester containing all valid device
options.

The selected
Major Mode
will determine just which devices are valid

for a particular operation. It is important to know a bit about how
devices work on the Amiga to understand what shows up here. The AmigaOS
provides several levels of device abstraction, as shown here. The
Exec-level interface is very simple, supporting just the few commands
needed to read and write basic data to and from a variety of hardware types
in a device-independent fashion. The DOS-level interface is more
sophisticated, supporting the knowledge of files and directories.

Since a disk error is inherently a problem the given AmigaDOS file system
can’t resolve, DiskSalv must operate at the Exec level to run most of its
operations. Thus, in the diagram above, DiskSalv could not process the RAM:
disk, since that device’s file system talks directly to the hardware
(memory, in this case). The operations performed by DiskSalv are based on
its knowledge of the AmigaDOS file system structure. Since the CD0: device
above uses the CDFileSystem, which addresses the ISO9660 file format rather
than the Amiga file format, DiskSalv can not process CD0: either. It can
process DH0: and DF0:. A variety of checks are made on each device in the
system to determine DiskSalv suitability, depending on the selected mode.

Topics:

Basic List Views

Device List Requester

Read New Devices

1.37 basiclistviews

The Device: gadget is typical of pop-up list requesters used in ←↩
DiskSalv.

Similar list requesters are available for FileSystem and
Pattern
selection on the
input window
, and for other selections elsewhere in

the DiskSalv program. In all such requesters, a list is displayed which
scrolls in realtime based on movement of the proportional slider or

DiskSalv 26 / 98

clicking of the arrows. In some cases, the list view provides a second
slider and set of arrows for scrolling on the horizontal axis. A current
object is indicated with backfill, and in some cases multiple selections
are shown in highlight. Unlike the gadtools list view used by many
programs, the DiskSalv list view behaves the same in all version of the
Amiga operating system.

1.38 devlistreq

The Device List requester lists the AmigaDOS device name of each ←↩
device in

the system. It will only list devices that are suitable to the selected

Major Mode
in effect at the moment, in this case Salvage mode. Next each

device name is the logical volume name of the disk in that device, if any,
since Salvage mode uses physical devices. If Backup mode were selected,
this requester would list logical names first, and the physcial device
associated with each, if any, as the secondary name. A device is selected
by clicking on a name with the mouse, then clicking the Ok button.
Alternaterly, a double-click on the name will select it. A click of the
Cancel button will leave the Device List requester without making any
selection.

1.39 2213

A final feature of the
Device List
requester (though not found in other

list views, naturally), is the single menu item, Read New. Selecting this
menu item causes DiskSalv to reinitialize its device list from the global
AmigaDOS device list. If any devices are added via Mount or other means
after DiskSalv starts, this function will pick them up.

1.40 2201

When an input device is selected, DiskSalv attempts to determine ←↩
which of

the Amiga file system types is in use on the device. Ordinarily, this can
be done simply, by reading the root block of the device’s partition, the
standard place to store the file system type code. When DiskSalv finds a
meaningful code, it will automatically select that file system for
processing. In most cases, the user doesn’t do anything here.

However, there are some times when user intervention may be called for.
When it is, the file system type can be changed by clicking on the File
System: list request gadget. This will pop up a list of the file
system types known to DiskSalv. It is extremely important to select the
proper file system for a device. If the wong file system is selected, the
file system structure on that disk can be permanently damaged!

DiskSalv 27 / 98

There are a few times the user may wish to override the file system type
selected by DiskSalv. It is possible that a disk crash caused the file
system type stored on-disk to be incorrect. This is most common when a disk
has been accidently formatted. For example, I might have a hard disk
formatted as Fast FileSystem, but perhaps its default type is Original
FileSystem. Let’s say I accidently type:

1> Format DEVICE DH0: NAME "Whoops!" QUICK OFS

DiskSalv can completely reverse this operation using the Unformat mode. But
it will think the partition is formatted with the Original File System Not
only won’t that work, but it would cause DiskSalv to corrupt this input
disk’s structure. That’s how important the proper file system selection is.

When the file system is unknown, the user’s best recourse is to select the

Best-Guess
file system type. This is not actually a file system, but

a special pseudo file system. When selected, DiskSalv will run extra
analysis steps during its scan of the input device, which are then used to
decide the type of the disk. This isn’t perfect, for several reasons. The
first reason is, of course, that DiskSalv at present knows just these file
systems:

OFS Original File System.
FFS Fast File System.
OFS Intl. OFS with ISO 8-bit character support.
FFS Intl. FFS with ISO 8-bit character support.
DC-OFS OFS with directory caching
DC-FFS FFS with directory caching

These are the file systems that DiskSalv can process. It attempts to reject
any other file system. In some cases, a device can be detected as some kind
of custom file system, such as RAM: or CD-ROM (ISO9660 file system). When
these are detected, no

device list
entry is made for them. In other cases,

the device type can be detected as a type not supported by DiskSalv, or an
unknown type. Examples of these are:

FAT MS-DOS File System
FAT12 Another MS-DOS File System
NDOS A disk specifically marked as Not a DOS Disk
COPY A diskcopy failed on this disk.

DiskSalv tries to make an intelligent guess about the file system type
recorded on the disk. If the type is unknown but seems to be a well formed
file system code (eg, it might be a valid, unknown file system), DiskSalv
will keep the unknown file system code for internal use. It will display
the code, but it can’t do anything to the disk (and will prevent the user
from doing so). When no probable type can be determined, the default file
system is selected. This defaults to

Best-Guess
, but can be changed

via the
DEFAULTFS

DiskSalv 28 / 98

command parameter.

1.41 bestguess

The Best-Guess file system is actually a pseudo file system ←↩
supported by

DiskSalv. It causes DiskSalv to process a scan with no preconceived notion
of the file system type, and to keep track of statistics on the format as
found. In most cases, this can automatically determine the type of the
underlying file system, assuming it is one of the standard AmigaDOS
formats, of course.

Best-Guess can also be selected to process a damaged disk, perhaps a COPY
disk, but it makes no sense on MS-DOS disks. Also note that the low-level
disk format is a factor. This is controlled by the Exec-level device driver
used. So DiskSalv can determine the identity of an MS-DOS disk through
PC0:, but not through DF0:, since the low-level format is the MS-DOS type
as well as the file system format.

The Best-Guess mechanism works well on damaged AmigaDOS disks. It can,
however, be confused by the history of the disk. For example, consider a
full OFS disk that’s reformatted to FFS, then filled rather sparsely.
There’s an excellent chance, at this point, that Best-Guess would detect
this as an OFS disk, since based on the disk’s content, it is more than it
isn’t. There wasn’t much that could be done about this in the past.
Nowadays, it’s a good idea to run

Cleanup
mode on a freshly formatted

disk, once it’s certain that this new format was a good idea.
Cleanup
will eliminate any trace of the previous format, even if the new ←↩

format was
put in place with a Format Quick command.

1.42 2215

A final option of the Device setup is the selection of an optional

pattern
. A pattern can be selected to include, exclude, or search for

an object or set of objects being scanned. DiskSalv maintains any number of
named pattern sets, which are selected by name by clicking on the Pattern:
button. New

patterns
can be entered by editing a pattern file and loading

it with the
Pattern Load
funcion.

1.43 2202

DiskSalv 29 / 98

The Major Mode defines the operation that will be run on the ←↩
selected input

device during when the Scan button is pressed. This is set via a cycle
gadget on the bottom left of the

input window
, directly below a graphic

that depicts the selected major mode. The setting of the major mode will
have an effect on the options offered in the

input window
, such as device

type and
pattern
support.

Topics:

Salvage

Undelete

Repair

Unformat

Check

Backup

Cleanup

1.44 mmsalvage

The Salvage mode is the default mode when the
input window
first comes

up. This is essentially the mode of last resort. In Salvage, the disk is
scanned for any objects that can be found. These objects must be
recongnizable to the scanner as valid objects, but may not be understood by
any Amiga file system. DiskSalv uses a set of pattern matching routines
based on fuzzy logic to determine if a given disk block could contain
something recognizable enough to recover.

Once the disk has been scanned, the scanner window changes into the

output window
. In this window, the user can select objects to recover.

Objects are not changed on-disk, but are in fact copied over to an
alternate volume of some kind. This operation is called

recover-by-copy
.

There are a couple of things to appreciate about the Salvage mode. Since
DiskSalv can find anything that’s on the disk, it will often find unwanted
or incomplete files. Normally this is no problem, but each file scanned

DiskSalv 30 / 98

requires a small amount of memory, and of course each file selected for
restoration requires space on the selected output device. One may use the

pattern
mechanism to define patterns to break a scan up into pieces,

exclude files that are otherwise backed up, etc.

Undeleted files are generally restored in full, though a damaged file,
perhaps the cause of the disk crash in the first place, may be restored
only in part. This is also true of deleted files that have had part of
their contents reallocated. DiskSalv makes no attempt to decide whether
such files are useful or not. It will by default set AmigaDOS file notes on
any file that appears damaged in some way. Files that are severely damaged
may be difficult to restore in much completeness, but files with only
slight damage can often be restored in near totality.

The Amiga’s Original File System provides good redundancy on the contents
of a file, while the Fast File System does not. Therefore, more can usually
be recovered from a crashed OFS disk, all else being equal. This is
primarily due to extra accounting information stored along with every OFS
data block. FFS data blocks store only data. This is also why FFS is faster
and stores 6.7% more data per block, on partitions that use 512 bytes per
block. For extra security, it is a reasonable idea to use an OFS partition.
The efficiency of OFS goes up with increased block sizes, which are
available globally in AmigaDOS 2.x and above (by adjusting the bytes per
sector setting), or on a partition by partition basis in AmigaDOS 3.1 and
above (by adjusting the sectors per block setting).

Unlike a file or link, a directory does not have to exist on-disk to be
recovered in Salvage mode. The existence of a directory can be determined
if any of its children is discovered on-disk. DiskSalv uses this mechanism
throughout the scanning process. When a file is discovered, it is placed in
a directory. If that directory hasn’t been found yet, DiskSalv will create
a temporary directory for it in the DiskSalv_Extras directory for the
output disk. When the scan has completed, any objects with missing
directories will be found in their temporary directories. Thus, DiskSalv
can get back a whole disk’s contents, in the original tree structure, even
if every directory on the disk were somehow eliminated.

The Salvage mode is the most forgiving DiskSalv mode when it comes to disk
integrity. There is no requirement that a disk’s bitmap, root block, or
much of anything else be intact on the disk. DiskSalv will attempt to
adjust for an incorrect partition definition on a file-by-file basis.
However, if a partition is off by much, some file will not be found. Users
of DiskSalv 1.x should recognize the Salvage mode as essentially what this
early version of DiskSalv did. While the intent is the same, the modern
version of Salvage works considerably better than the original DiskSalv
version of the function. The Salvage mode of DiskSalv 2 is the same
function.

1.45 mmundelete

The Undelete mode is designed to recover accidently deleted files. ←↩
Unlike

most other DiskSalv modes, this function will only operate on a good

DiskSalv 31 / 98

device, one that is validated under AmigaDOS. It uses the disk’s bitmap to
determine which disk blocks are unused by AmigaDOS, and scans only those
blocks.

As in the Salvage mode, this is a recover-by-copy mode. When the disk scan
has completed, the user is presented with a list of directories and files
in the

output window
file browser. Selected files can be copied to

any other AmigaDOS disk volume or pipe-like object, such as a
TAPE:
device.

Like Salvage, the Undelete mode supports DiskSalv
patterns
. A pattern

can be constructed in any text editor, several useful defaults are included
in the "DiskSalv.pattern" file. This must be done a bit more carefully that
when dealing with undeleted files, however. It’s not only possible, but
quite common, that while a file still exists, its parent directory block
has been reallocated.

1.46 mmrepair

The primary
fix-in-place
mode is the Repair mode. This is designed to

analyze an AmigaDOS device in-place and correct it such that its structure
is a legal one for mounting under its an AmigaDOS file system. Ideally, the
Repair mode will restore a disk to full read/write operation with no data
loss. In practice, however, it’s often necessary to remove an object or two
in order to repair the disk’s structure. Files can become damaged for a
variety of reasons. DiskSalv does not attempt to repair the on-disk
structure of a file. If a problem file is encountered, it will be de-linked
from its parent directory on-disk, and presented for

recover-by-copy
on

the
output window
after the

fix-in-place
operation has completed.

Just like files, directories can be found damaged on a disk. However,
DiskSalv does attempt to reconstruct a damaged directory. Based on its
full scan of the input device, DiskSalv’s internal disk model will have a
record of the name, if available, and the contents of any directory either
found directly or implied by a child’s reference. With this, DiskSalv can
reconstruct a damaged directory in full. Only a hard error will prevent
this form of recovery and require a directory to be eliminated from the
disk’s directory tree.

There are two variations on the Repair mode: slow and fast. The slow mode
is indicated by setting the scanning speed option button to slow . This
causes DiskSalv to scan the entire disk from start to finish, which takes

DiskSalv 32 / 98

awhile, but builds a very complete model of the disk. When the scanning
speed option button is set to fast , the scan can be completed in much less
time, by walking the disk’s file structure from the root block on down.
This builds a less complete model of the disk, and does not deal with
damaged directories very well. It can solve simpler problems, though, and
it’s much faster than the slow version of Repair mode, especially on large
disks. The fast Repair never undeletes files, while the slow Repair can
undelete files, but only in the process of reconstructing a directory from
scratch. The intent here is to fix the disk’s structure, not undelete
anything the user has specifically deleted.

When the Repair mode has finished, it leaves the input disk with its bitmap
set invalid. This causes the Amiga’s file system validator to process the
disk, a perfectly normal behavior. The philosophy behind this is simple --
the file system is the ultimate judge of the correctness of a disk, and it
has a routine (the validator) to determine this correctness. It would be
both unwise and wasteful for DiskSalv to attempt this final pass.

Unlike the
recover-by-copy
modes, the Repair mode (and other

fix-in-place
functions) can not use a DiskSalv pattern to filter files during ←↩

scan. The
ability of a Fix-In-Place run to repair the input disk is directly tied to
the completeness of its disk model. Any exclusions would compromise this
model.

1.47 mmunformat

The Unformat mode is a
fix-in-place
designed to reverse the accidental

formatting of a disk. In truth, if a disk is formatted in full, there is
no going back. A full format in most file systems erases all data on the
formatted disk.

Yet a format isn’t always full. The Format command itself supports the
Quick option. This causes the disk’s file system type to be updated, and it
writes an empty root block. So, to the user, the disk is clean, but in
fact, very little is destroyed. DiskSalv can get everything back when this
is done accidently. Alternately, the user may abort a full format before it
is complete. DiskSalv may be able to partially restore such a disk
in-place. If not, the Salvage mode can get back anything that’s still
viable.

Care must be taken to set the file system type properly. The user must make
absolutely certain that the file system input to DiskSalv is the type of
the format being recovered, which is not necessarily the type of the new
format recorded on disk. If there is any doubt, use the

Best-Guess
pseudo

file system type. This will analyze the format on-disk, and select the type
that best matches this format. This works very well if there has been only
one format on the disk, or if the disk was very full. It can fail if the

DiskSalv 33 / 98

number of objects from an even older, different format outweigh the number
of active objects on the disk structure being restored.

The Unformat mode is not only useful for in the case of an errant format.
The scanning and reconstruction mechanism is exactly the same as the slow
variation of the Repair mode, with a slightly different emphasis. During a
Repair, every directory found is analyzed for correctness on-disk. If it is
in anyway damaged, it is rebuilt from DiskSalv’s internal tree model. Under
Unformat, every directory encountered is rebuilt from DiskSalv’s model.
This has the effect of bringing back any file that is still viable. So in a
way, Unformat can be thought of as a global Undelete-in-Place, and it may
be used as this. The main disadvantage of such an operation is that may
bring back a large number of old files that no longer have any reason for
being.

1.48 mmcheck

The Check mode is a
fix-in-place
mode that doesn’t actually fix anything.

Instead, it reports what a Repair mode run probably would have done. It is
useful to check suspect disks before running DiskSalv to repair them.

As implied, the report generated by a check run can not always be an exact
one. During a real fix-in-place run, repairs made early in a run can affect
things done later in the run. In general, though, the check report is a
worst-case report, and since it does not change anything on disk, it’s
always safe to use.

1.49 mmbackup

As a preventative measure, DiskSalv offers the Backup mode. ←↩
Unlike all

other modes, Backup operates on logical volumes rather than physical
AmigaDOS devices based on the AmigaDOS file systems and standard Exec-level
device drivers. Thus, DiskSalv can backup from any kind of file-oriented
AmigaDOS device (disk, network, CD-ROM, etc.), even a logical device
created with the AmigaDOS Assign command.

This mode scans the given logical device by walking its file structure and
building a standard DiskSalv tree model. Like any

recover-by-copy
mode,

this scan can be altered by a complex
pattern
. It’s very common to

exclude any files that have the archival bit set, though this is of course
just an option. It is also reasonable to use a

pattern
that matches

any file that doesn’t need to be backed up. Such files may include easily
installed commercial software (it’s already on floppy or CD-ROM on your

DiskSalv 34 / 98

bookshelf) or various kinds of output files (many, though not necessarily
all, object or postscript files, for example, are easily recreated from
their sources).

Optionally, the archive bit may be set on each file that DiskSalv backs up.
This can be set via the Settings menu on the

input window
. While the

effect of this does not take place until actual output is done, it is a
parameter affecting the input disk and, therefore, addressed on the

input window
.

Once a scan is complete, the
output window
is called up just like in

a
recover-by-copy
operation. This allows the selection of files

encountered during a scan, and it allows the output device to be selected.
Just as in the other Recover-by-Copy modes, backup can be made in file
structure format to any AmigaDOS disk-oriented device. Alternately, it may
send the backup set out in DiskSalv’s Archive Stream format to any
pipe-like device, such as a file, a PIPE: device, or a

TAPE:
device.

By linking together pipes, any external compression protocol that supports
piping may be used to compress the DiskSalv stream before it goes to your
choice of media. DiskSalv does not currently provide any automatic piping
mechanism, though it will in the future.

1.50 mmcleanup

The Cleanup mode is a disk maintenance option. Like other modes, ←↩
this scans

an input device. However, rather than looking for things to fix, it looks
for things to eliminate. After months or years of use, a disk, especially a
large hard disk, can have quite an array of deleted files in various states
of disrepair somewhere on it.

Cleanup is designed to locate these and eliminate them for good, by erasing
them on-disk. This has a couple of uses. Since it simplifies the disk’s
history, it makes Salvage and Undelete modes easier to work with, since
fewer garbage files need be sorted through if a salvage is needed later.
This also improves the reliability of a future

Best-Guess
scan,

since any previously existing formats are wiped away when this is run. This
mode is also useful at cleaning any possible unwanted deleted files from
software release disks. While uncommon today, early DiskSalv users reported
finding smatterings of various program sources on early release disks from
several companies.

The Cleanup mode has some restrictions. Like most other DiskSalv functions,

DiskSalv 35 / 98

it can only operate on a physically based AmigaDOS device with one of the
aforementioned file system types on it. Additionally, it requires the input
disk to be fully validated, both as seen on-disk and as reported by
AmigaDOS. This is because it bases its scan of unused blocks on a device’s
bitmap. If the bitmap isn’t valid, DiskSalv would probably damage the input
device if not checking carefully.

1.51 inputbuttons

DiskSalv provides a set of useful functions on a row of button ←↩
gadgets

below the device display on the
input window
. None of these functions

are required for the proper operation of DiskSalv, though most of them are
quite useful.

Button Options:

Information

About...

Pattern Selector

Scanning Speed

Log File

Restore Stream

Device Editor

Device Analysis

Load Device

Save Device

1.52 2204

The Information button displays additional details about the ←↩
selected

device. This information, which varies according to device type, is rarely
very useful to the user, but it is provided anyway. AmigaDOS supports four
kinds of devices, from its point of view.

A physical device represents a normal AmigaDOS device description
constructed from the AmigaDOS device environment list by DiskSalv. A
physical device is fully initialized by DiskSalv, and can be used in any
DiskSalv mode. A slight variation is the unmounted device. This indicates a
full-featured AmigaDOS device, complete with file system and all, that has

DiskSalv 36 / 98

not yet been initialized by AmigaDOS. It is common for AmigaDOS device to
be physically initialized on-demand, when first used. The unmounted
designation allows DiskSalv to keep them in this state. AmigaDOS functions
are not used on unmounted devices by DiskSalv, since this will cause them
to be initialized by AmigaDOS.

The third kind of device is the virtual device. Any device description not
supplied to DiskSalv from AmigaDOS is labeled virtual. These include
partitions found during an Analysis run, descriptions entered by hand in
the

Device Editor
, or descriptions loaded from
DOSDrivers
files.

DiskSalv will not use any AmigaDOS functions on a virtual device.

The final device type is the volume. A volume is any AmigaDOS device,
volume, or assignment. At present, volumes only exist in Backup mode, and
they are the only device type supported there. If a device is selected in
any other mode, it will be converted to a volume, if possible, when Backup
mode is selected. If Backup mode is left for another mode, any volume
device selected will be converted to a physical device, if possible. If the
device conversion can not be done, the device entry will be cleared.

An example of the Device Information requester is shown above. All
physical, unmounted, and virtual devices are displayed something like this,
while the volume display contains much less data. If the Device Information
display shows up as a tall, thin column of text that extends off your
screen, you have a problem. There are several Requester Improver programs
out in the freely redistributable software channels. These seeks to
generate fancier requesters by replacing the AutoRequest functions in
Intuition. When a such a program’s replacement function doesn’t properly
support the features of Intuition’s function, you may see this distortion
in some DiskSalv requesters. DiskSalv is doing nothing wrong, the fault
here lies with the replacement AutoRequest function. Eliminating the
Requester Improver, or using one that properly emulates Intuition, will fix
this problem for you.

1.53 inputbuttons.about

This button displays information about the program and the author. It
displays the release and internal version number of DiskSalv 3. This
information is a critical debugging aid when any problems are reported.

1.54 2203

This button calls up a file requester, to load a
Pattern
file. Any

number of named complex patterns may be included in a pattern file. A
complex pattern can match, exclude, or search for specific files and/or
directories. Patterns allow matching against files, directories, or both,

DiskSalv 37 / 98

file notes, protection, date, etc. The pattern to be used for a scan is
selected via the

Pattern Select
button.

1.55 2214

The Scanning Speed button is a toggle button that selects between ←↩
slow and

fast disk scanning algorithms. At present, only the
Repair
mode has two

possible scanning algorithms, so this button is disabled in other modes.
As you might expect, there is a tradeoff between the speed at which a disk
can be processed and the throughness of the processing. When set for slow
scanning, DiskSalv looks at every block on the input device to build its
tree model for Repair. When set for fast scanning, DiskSalv walks the tree
structure of the input device instead. This tree walk is generally much
faster than a complete scan, but it’s not quite as complete. Generally,
the fast Repair (called Validate in DiskSalv 2) can fix minor problems just
as well as the slow Repair. Slow Repair is recommended for severe problems,
and actually required if DiskSalv can’t make sense of a disk’s root block.

1.56 220d

This calls up a standard Amiga file requester to create a Log File.
Everything that happens in any DiskSalv Scan window will be recorded in a
log file. All of the important results of any DiskSalv scan, including the
modeling scan, backups, analysis, file recovery, or archive restoration is
logged in this file. Every event that takes place in the Scan window is
tagged with a scan operation code, making it easy to search though a log
file run on even extremely large disks. Obviously, a log file must not be
created on the input device, but it can be created on any logical AmigaDOS
device, including SER:, PAR:, or PRT:.

1.57 2208

This calls up the Stream Restoration requester. As described in ←↩
chapter 6,

the results of a Backup or Recover-by-Copy operation can be sent to an
archival stream rather than an AmigaDOS file system. DiskSalv manages this
stream format, which preserves the tree structure and contents of the
device being processed, but writes it out as a single object. This can be
sent to a pipe or a file.

DiskSalv streams may be real useful when copy out files from a disk, but
they’re of little use until they’re restored. The Stream Restoration
requester accepts the name of a DiskSalv stream and some AmigaDOS
file-structured device for output. They are entered into string gadgets,
but standard file requesters may be brought up for either one by pressing

DiskSalv 38 / 98

the file requester button associated with each string gadget.

Once the fields have been filled in, the Start button is enabled. A press
of this will open the DiskSalv

Scan
window and start the restoration

process. As with all Scan operations, progress is indicated by tallies of
the objects found. Results are displayed line by line as they occur (this
is the same data written to a log file).

1.58 2212

A press of the Device Editor button will change the
input window
into

the
Device Editor
window. The device editor provides a simple way to

enter a new device description, or edit an existing one, from within
DiskSalv. Any device so entered becomes a virtual device in DiskSalv terms.

There are several ways to use this. If a device is currently selected on
the

input window
, it will be automatically entered into the Device

Editor. Any device on the Amiga workbench dropped into the Device Editor
window will be entered in place of the current device, if any. After edits
are made, the

input window
is restored by clicking on either the

Create
button, to keep the device, or the
Cancel
button, to return with no

changes made. DiskSalv checks any newly entered device against existing
devices, and will only permit unique devices to be created.

1.59 2205

The Device Analysis button calls up the
Device Editor
in its device

analysis mode. This mode is designed to search an entire physical disk for
any AmigaDOS partitions that may exist on it. The search can be directed to
find a particular volume, or all viable volumes on the disk. Data for the
search device is set up in the Device Editor much like for a traditional
device edit. If a disk icon is dropped into the window at this point, the
device editor will attempt to figure out the full size of the physical disk
that partition is on by looking for any other mounted partitions on the
same disk. Once the information is set up, click the

Search
button to

DiskSalv 39 / 98

do search by pattern for a specific volume,
Analyze
to find as many

volumes on disk as possible, or
Cancel
to go back to the

input window
.

Pressing either of the former buttons will start up the DiskSalv
Scan
window. In this mode, only partitions are of interest. A tally of

partitions and errors is kept, and anything found is displayed. A
continuous report of errors generally indicates the scan has run off the
end of the disk. Once the scan is complete, the

input window
is

restarted. The
device list
will contain any new device descriptions

discovered during the scan.

1.60 220f

This button brings up a standard file requester, to allow an ASCII ←↩
device

description file to be loaded as a virtual device into DiskSalv. Such a
file must be in the

DOSDrivers
file format. A DOSDrivers file contains

the description of a single device, using the same notation as originally
defined for the system-wide MountList file. DOSDrivers files have been
preferred on the Amiga, rather than the single MountList, since AmigaOS
2.00. Rather than use the Load Device button, a

DOSDrivers
file may simply

be dropped into the
input window
.

1.61 220e

The inverse of Load Device, the Save Device button brings up a ←↩
standard

file requester to allow the currently selected device to be written out to
disk in

DOSDrivers
format. If no device is selected, this button is

disabled. Any device, including those found during an Analyze run, may be
written out to disk. Thus, a missing AmigaDOS device may be located with
Analyze, written to disk, and mounted under AmigaDOS via the Mount command.
DiskSalv provides everything necessary in these files to physically

DiskSalv 40 / 98

describe the partition. Extra such as Mask, FileSystem, MaxTransfer,
GlobVec, etc. may have to be added by hand to support the mount properly.

1.62 inputproject

The Project menu is largely redundant in DiskSalv 3. Most of its ←↩
options,

originally defined for DiskSalv 2, are available via function buttons or
other gadgets. It is retained in any case for completeness.

Menu Options:

About...

Help...

Log File...

Restore...

Quit

1.63 2207

The Quit item, like the close gadget, unconditionally quits DiskSalv. There
is no difference between the two, though some users prefer one method over
the other.

1.64 inputsettings

The Settings Menu offers a number of optional settings, and the ←↩
option to

save the settings made here. These settings adjust things that happen to
the input device or during the forthcoming Scan operation.

Menu Options:

DOS Lock

Low Memory

Small Window

Quick Scan

Set Archival Bit

Internal Help

Save Settings

DiskSalv 41 / 98

1.65 2209

Once the Scan starts, DiskSalv will inhibit a physical input ←↩
device,

effectively shutting down the file system on that device. This prevents
AmigaDOS from doing anything to the disk during DiskSalv’s run, which is
the proper thing to do according to the AmigaDOS specifications. However,
on occasion this causes problems. For example, it’s possible, especially
for Undelete runs, that DiskSalv is being used on the SYS: disk. Shutting
down the SYS: disk is not generally a good idea. When unchecked, no inhibit
will be used on the input disk. When running in this mode, it is very
strongly suggested that all other programs that be shut down are shut down.
A write to a disk being examined by DiskSalv can cause incorrect results.
Because of this, DiskSalv always inhibits when performing a

fix-in-place
operation. To run a
fix-in-place
on the SYS: disk, boot up with a

different SYS: disk. This corresponds to the
KEEPDOS
command parameter.

1.66 220a

While DiskSalv is not at all wasteful with
memory
, it does use memory

here and there to improve the speed of disk processing. If memory is really
tight on a system, checking this option may save enough to let DiskSalv do
its work, at the expense of extra time. Of course, in such cases, all extra
software should be shut down. It’s still possible that some systems will
have disks that are too large to process in the memory available.

Patterns
can be used to break a Salvage run up into several pieces,

by restricting the scan in various ways. All
fix-in-place
operations

must occur in one piece. This corresponds to the
LOWMEM
command paramater.

1.67 2210

Ordinarily DiskSalv will adjust the
Scan
window according to the size

of the screen DiskSalv opens on. If the screen and font size permit, a
reasonably large Scan window is opened, leaving room for a good sized
Results display. Checking this menu option will prevent this, keeping the
window as small as possible. This corresponds to the

SMALLWINDOW

DiskSalv 42 / 98

command paramater.

1.68 2211

Checking this menu option will increase the speed of a disk scan ←↩
by

eliminating the Results display from the
Scan
window. Depending on the

screen type and hard disk speed, the elimination of this text display and
window scrolling can significantly increase the speed of the scanning
process. If a log file has been selected, it will still get the result, but
of course that will defeat the purpose. This corresponds to the

QUICKSCAN
command parameter.

1.69 2216

AmigaDOS file systems support an Archival bit, a bit in a file’s ←↩
protection

field that indicates that the file has been backed up. Checking this item
will cause DiskSalv to set the archival bit on the input disk of any file
it backs up. At present, this feature is only enabled in

Backup
mode.

This corresponds to the
NOARCHIVE
command parameter.

1.70 220b

Ordinarily, DiskSalv will call up AmigaGuide as a help server if ←↩
it can

find an appropriate DiskSalv.guide file. If, for some reason, AmigaGuide
help is not desired, checking this option will cause the internal help text
to be used instead in response to any help events. This option is also of
use to users of certain V34.x releases of AmigaGuide.library. For unknown
reasons, this library crashes when called up by DiskSalv (or any other
program) as an asynchronous help server. The AmigaGuide help can be turned
off on startup via the

NOGUIDE
command paramater. However, upgrading to

a corrected release of AmigaGuide.library will enable the AmigaGuide help
server, which is far superior to the internal help.

1.71 220c

DiskSalv 43 / 98

Selecting this item will cause DiskSalv to write the state of each of these
items to the DiskSalv icon. Each item is controlled by a command parameter
(Icon tooltype or shell-based command-line option). These may be set
manually on the shell’s command line or by editing the DiskSalv icon via
the Workbench Information... function.

1.72 2206

Once the input paramaters have been set up to DiskSalv’s ←↩
satisfaction, the

Scan button is unghosted. Clicking on this device will start the disk
scan. The

input window
will be replaced by the

Disk Scanner
.

1.73 patterns

DiskSalv supports a complex pattern matching mechanism, which can ←↩
be used

to control which files are scanned by DiskSalv. Patterns are considered
when running in

Salvage
,
Undelete
, or
Backup
modes, ignored in all other

modes. By default, DiskSalv reads patterns in from the
DiskSalv.pattern
file, if present.

Patterns are defined in a C-Language-like syntax. There are two main types
of patterns: patterns and groups. A pattern handles a single set of
matching attributes, while a group can contain any number of patterns.
Patterns and groups are always named, and can be selected by name in the

pattern selection
function.

Types:

pattern

group
Attributes:

path

note

DiskSalv 44 / 98

date

size

protection

match
Miscellaneous:

comments
Complex patterns can be edited with any ASCII text editor. Any ←↩

number of
files can be loaded into DiskSalv. Loads are additive -- a load doesn’t
overwrite the existing patterns.

1.74 pat.names

A pattern name may contain any ASCII characters except SPC, TAB, LF, CR,
VT, {, or }. Ideally, a name is descriptive of the pattern’s function.
Spaces may be embedded in the name as long as the name is enclosed in
quotes.

1.75 pat.attributes

Patterns may contain one of each of the following attributes:

path

note

date

size

protection

match
When an attribute is not supplied, the associated item is not ←↩

considered
when a pattern is matched against a file or directory.

1.76 pat.compare

Comparisons are done using the standard comparison operators used in most
computer languages:

= Match file properties which are exactly equal to the item.
> Match file properties greater than the item.

DiskSalv 45 / 98

< Match file properties less than the item.

1.77 pat.pattern

A pattern is specified in C-like syntax:

pattern
<pattern_name>
{

<attributes>
};

The pattern can be referenced by name in the
pattern selection
list.

1.78 pat.group

A group is specified in C-like syntax:

group
pattern_name
{

patterns
};

When multiple patterns match the same file or directory, the first pattern
listed takes precedence over any others.

1.79 pat.path

The path() attribute matches a file or directory name. The syntax ←↩
is:

path(
AmigaDOS pattern
[,"any|file|directory}"]);

The "any" qualifier matches against files or directories, and it is the
default. The "file" qualifier matches only files. The "directory" qualifier
matches only directories.

1.80 pat.note

DiskSalv 46 / 98

The note() attribute matches against a filenote, as set via the ←↩
AmigaDOS

FileNote field of a file or directory. A standard AmigaDOS regular
expression is used for the matching. The syntax is:

note(
AmigaDOS pattern
);

1.81 pat.date

The date() attribute matches against the date stamp on a file or ←↩
directory.

The attribute can specify a
comparison
and date, using a standard

AmigaDOS date
specification. The syntax is:

date(
<comparison>
,
<AmigaDOS date>
);

The comparison considers only the date, not the actual time of day of a
file.

1.82 pat.size

The size() attribute matches against the byte size of a file. The
attributes can specify a comparator and a file size. The size may be bytes,
Kilobytes (K), Megabytes (M), or Gigabytes (G). The syntax is:

size{
<comparison>
,"size");

Directories are considered to have a size of zero bytes.

1.83 pat.protect

File and directory pattern bit comparisons can be specified with the
protect() directive. Each protection bit can be matched set, matched clear,
or ignored. The syntax is:

protection{"<protection bit string>");

DiskSalv 47 / 98

Where a protection bit string consists of the following:

D Match the Delete bit set
E Match the Execute bit set
W Match the Write bit set
R Match the Read bit set
A Match the Archival bit set
P Match the Pure bit set
S Match the Script bit set
!<PB> Match the following protection bit clear

Some useful protection attributes:

protection("!A"); Matches unarchived files/directories
protection("E"); Matches only files set as executable

1.84 pat.match

The match() attribute decides the action that should be taken for anything
that matches the rest of the complex pattern. The syntax is:

match("include|exclude|stop");

The result of the actions is:

include The matched item is included in the scan
exclude The matched item is exclued from the scan
stop The scan stops on a match, the item is included

1.85 pat.comment

C-like comment blocks may be included anywhere in a pattern file. They are
completely ignored by DiskSalv. The syntax:

/* This is a comment */

Comments can be nested, but the start and stop tokens must be matched.

1.86 deviceedit

The Device Editor is started from the
input window
, by clicking on

either the Device Editor or Device Analysis buttons. This window
replaces the input Window.

Topics:

Device Selection

DiskSalv 48 / 98

Device Edit/Creation

Device Analysis

Rigid Disk Block Functions

Parameter Fields

Menu Items

1.87 deviceselect

While a device description can be entered into the Device Editor ←↩
completely

by hand, it is more often the case that an existing description will be the
basis for a new device or an analysis pass. There are several ways to enter
a device’s decription into the editor.

Topics:

Current Device

Workbench Device

DOSDrivers File

1.88 devsel.current

In truth, it’s rather unusual to enter the
Device Editor
without some

device decription automatically brought in, though it is possible. If there
is no current device selected in the

input window
, the Device Editor

will start up with all of its data fields either empty or set to program
default values. If there is a current device selected, the

Device Editor
starts up with its physical parameters entered.

1.89 devsel.workbench

Once in the
Device Editor
, any AmigaDOS
device
can be dropped into

the window. If the device is suitable for DiskSalv, it will be entered
into the Device Editor. Any previous device description is discarded. If
the device is not suitable, it will be rejected, and the display will

DiskSalv 49 / 98

flash.

1.90 devsel.dosdrivers

Drag and Drop

A
DOSDrivers
file with an appropriate device description can also be

dropped into the Device Editor. If the
DOSDrivers
file contains the

proper format and is suitable to DiskSalv, it is entered into the Device
Editor. If there are any problems in format of or specification generated
by the

DOSDrivers
file, it will be rejected, and the display will

flash.

Load by Filename

The "Project/Load from File..." menu item will load a new file
description by name, rather than dropping. This command brings up a
standard AmigaDOS file requester which can be used to get the file.

Save to File

A device description can be saved to disk from within the Device Editor by
selecting the "Project/Save to File..." function. This brings up a standard
file requester, lets the user specify the name of the output file.

1.91 7306

The Device Editor lets the user enter a new device description or ←↩
alter an

existing one. Any of the device
parameters
may be modified to make a new

device. The Device Editor will not allow a device to be created until
every required field contains something reasonable. Once the device has
been edited to the user’s satisfaction, it can be finalized by pressing the

Create
button. The editor works in temporary storage, so that the

user can back out from the edit by instead pressing the
Cancel
button if

there is any problem.

Note that while the Device Editor does checking on the specified device
description, it does not actually try it out. Thus, it is possible for a
device to be entered into the

DiskSalv 50 / 98

device list
that’s not properly formed.

An attempt to open such a device, however, will be reported by DiskSalv as
an error. Any time a device open fails like that, it is removed from the
device list.

1.92 720a

When the Create button is selected, several things happen. ←↩
DiskSalv stores

devices by AmigaDOS device name, and will only store one device under any
name. A warning requester will come up if the name of the device to create
is the same as an existing device, allowing the user to replace the
existing device or return to the

Device Editor
. A warning will also be

issued if the device description is physically identical to a device
already in the

Device List
.

1.93 720b

The Search button starts up the device analyzer, based on the ←↩
device

information entered in the
Device Editor
. The Device Editor will keep

this button ghosted until enough data has been entered to make such a scan
possible. When a search run is selected, the scanner will start up and
display any scanning progress. An internal device model will be constructed
for any the first volume found during the scan that matches the required
simple AmigaDOS pattern. This device, which will be entered in the

Device List
by volume name, can be saved to disk via the

Save Device
button, or to disk or
Rigid Disk Block
from the Device Editor.

1.94 720c

The Analyze button starts up the device analyzer, based on the ←↩
device

information entered in the
Device Editor
. The Device Editor will keep

this button ghosted until enough data has been entered to make such a scan
possible. When an analysis run is selected, the scanner will start up and

DiskSalv 51 / 98

display any volumes that have been encountered. Internal device models will
be constructed for any volume found during this scan. These can be saved
to disk via the

Save Device
button, or to disk or

Rigid Disk Block
from

the Device Editor.

For analysis, a simple AmigaDOS pattern can be entered. This acts as a
filter against volume names -- only volumes that match this pattern will be
created. When no pattern is specified, all volumes found are generated.

1.95 720d

Click on this button to cancel the Device Editor/Analyzer ←↩
operation and

return to the
input window
. Since the device editor works in temporary

storage, no changes are retained.

1.96 deveditmenu

The Device Editor has a single Project menu. When the Device ←↩
Analyzer calls

up the Device Editor, there are only simple
Help
and

Quit
menu items.

In Edit mode:

Menu Options:

Help

Load from RDB...

Save to RDB

Load from File...

Save to File...

Quit

1.97 devedithelp

DiskSalv 52 / 98

The Help menu item displays help for either the
Device Editor
proper

or the
Device Analyzer
, depending on the mode selected for the editor.

1.98 720e

The Quit item, like the close gadget, unconditionally quits DiskSalv. There
is no difference between the two, though some users prefer one method over
the other.

1.99 rdbinout

The Device Editor has functions to read or write a disk’s rigid ←↩
disk block.

The Rigid Disk Block is a standard for Amiga disk drives that allows
partitioning information, among other things, to be stored on-disk, in a
controller-independent fashion. When a hard disk device starts up, the
partitions found in the RDB are examined and, usually, automatically
mounted as AmigaDOS devices.

If something goes wrong with the RDB, the partition or partitions on the
disk may be inaccessable by normal means. DiskSalv can help here. The

Device Analysis
function can find any partitions physically present

on a disk. These show up in the standard
Device List
. These can

be saved back to the RDB via the
Save to RDB
menu item. Alternately,

the device editor can be loaded by selecting the
Load from RDB
menu

item.

1.100 7211

This function loads a device description from a disk’s Rigid Disk Block
into the device editor. This can be used to edit the sttings in the RDB, or
simply to examine them. The name and unit number of the device must be
entered in the device editor before this function can be selected.

DiskSalv 53 / 98

1.101 7212

This function saves the device description in the Device Editor out to a
disk’s Rigid Disk Blocks. The Exec name, AmigaDOS name, unit number, and
all numeric parameters must be entered before this can be done.

1.102 7214

The Save to File item brings up a standard file requester to allow ←↩
the

currently edited device to be written out to disk in
DOSDrivers
format.

If no device is entered, this item is disabled. This is virtually the same
as the

Save Device
button function, except that it works on the device

description in the
Device Editor
rather than the currently selected

input window
device.

1.103 7215

This button brings up a standard file requester, to allow an ASCII ←↩
device

description file to be loaded as a virtual device into DiskSalv. Such a
file must be in the

DOSDrivers
file format. A DOSDrivers file contains

the description of a single device, using the same notation as originally
defined for the system-wide MountList file. DOSDrivers files have been
preferred on the Amiga, rather than the single MountList, since AmigaOS
2.00. Rather than use the Load from File menu item, a

DOSDrivers
file

may simply be dropped into the
Device Editor
window. This is virtually

the same as the
Load Device
button function, only it operates on the

Device Editor only, it doesn’taffect the current
input window
device.

1.104 7304

DiskSalv 54 / 98

The object of Device Analysis is to find any viable disk ←↩
partitions on the

given device and unit. As such, the data entered in the Device Editor is
not for a specific partition, but for the search that will hopefully
produce some partitions. The search can be limited by matching encountered
volume names against a normal AmigaDOS pattern, and also limited by the
range of sectors given for the analysis.

There are two analysis options, which differ only slightly. The
Search
option will stop analysis after the first volume matching the ←↩

supplied
pattern is found. A Search run will produce at most one new virtual device
entry in the

Device List
. The
Analyze
option will find as many partitions

matching the supplied pattern as possible, within the constraints of the
supplied physical parameters.

The
Search
and

Analyze
buttons are disabled until enough device data is

supplied. Device data doesn’t have to come entirely by hand. The current
device description is transferred on entry to the Device Editor, just as
with a normal edit.

DOSDrivers
files work as usual, too. Icons dropped

behave a bit differently. The device decription resulting will show the
range of all AmigaDOS devices on that particular Exec device and unit. This
won’t necessarily cover the whole disk, but it can if the first and last
partitions are known to AmigaDOS. Note that while the analysis routine
can’t go beyond the limits set, it can go beyond the end of the disk
(device drivers return an error here). So it isn’t absolutely necessary to
figure the last block properly, though errors do slow things down.

The Device Analyzer produces a virtual device entry for each partition it
finds. These will show up in the device list as soon as analysis is
complete. The

Save Device
function can write this out to a

DOSDrivers
compatible MountList file. The
Device Editor
can be called up to modify

anything that’s found, or to save the device description out to a Rigid
Disk Block descriptor.

1.105 paramfields

DiskSalv 55 / 98

The Device Editor fields are similar to some of the parameters ←↩
used in

DOSDrivers
and MountList files. DiskSalv needs only the parameters

that are called for in the Device Editor, while these aforementioned
AmigaDOS conventions support a much greater number of parameters.

Fields:

Device Name

DOS Name

Pattern

Unit

Surfaces

Sectors/Cylinder

Low Cylinder

High Cylinder

Bytes/Sector

Sectors/Block

Flags

Memory Type

1.106 7200

This is the name of the Exec device, such as trackdisk.device, scsi.device,
etc. This can be typed directly into the string gadget, or it can be
selected via a list of all devices, called up by clicking on the associated
list gadget. An Exec device is necessary for all Device Editor functions.
Naturally, not all devices in a system can be used here, only arbitrary
disk-oriented devices can. There is no way to determine automatically
whether a device follows this convention or not, but DiskSalv will report
any failure to open the specified device.

1.107 7210

The is the name of the DOS device, such as DF0:, DH1:, etc. This field is
present when the Device Editor is called up via the editor button. All
devices must have a unique DOS device name specified, even if they’re just
being created for use in DiskSalv.

DiskSalv 56 / 98

1.108 7201

This is a standard AmigaDOS pattern string. This field is present ←↩
when the

Device Editor is called up via the analysis button. This pattern is used as
a template for volumes enountered during the analysis run. If the Search
button is pressed, the scan quits as soon as one match is made. If the

Analyze
button is pressed, any volumes matching this pattern are added

to the device list. If no pattern is physically entered, the AmigaDOS
pattern #? (match anything) is used by default.

1.109 7202

This numeric field specifies the unit number associated with the Exec
device selected above. Most disk-oriented device drivers support more than
one unit. Typically, there are four floppy disk units (0..3), two IDE units
(0 and 1), and eight SCSI units (0..7) associated with their respective
device drivers. A unit entry is required.

1.110 7213

This numeric field specifies the number of surfaces physically supported on
a disk. Disk drives typically have several physicaly read/write heads, each
of which addresses a single disk surface. Floppy disks have two such heads,
one for the top surface, one for the bottom. Large hard disk drives may
have 15 or more active surfaces.

1.111 7206

This numeric field specifies the number of sectors physically located on a
disk’s cylinder. For most devices this number is all but meaningless, since
devices are logically addressed. The proper cylinder size, if known, can
make some difference in speed, since buffering in cylinder-sized chunks can
increase efficiency. This parameter is more important for floppy disks,
since they’re naturally buffered by the Amiga OS and can only be read or
written to in cylinder-sized chunks. For SCSI and other logically addressed
devices, its the aggregate cylinder, surface, and sectors/cylinder numbers
that are important taken together.

1.112 7203

This numeric field specifies the lowest logical cylinder (sometimes called
track) on the disk. Nearly every kind of disk and device driver starts the
disk at location zero. However, when creating a single device description,
it is the starting sector of the logical partition that’s really the object

DiskSalv 57 / 98

of concern. Analysis operations aren’t concerned with starting or finishing
at any specific point on a disk, but unless the approximate location of the
missing partition is known, it is a good idea to start the analysis near
the first cylinder of the disk.

DiskSalv device scans, and some other AmigaDOS device-oriented operations,
express the start of the partition in terms of sector number. The
relationship between cylinders and sectors is expressed as:

Sector = Cylinder * Sectors/Cyl. * Heads@

On physically addressed devices, like the floppy or the ancient ST-506,
these numbers have significance to the device driver, but have never been a
real concern to anything communicating to file systems or device drivers.

1.113 7204

This numeric field specifies the highest logical cylinder on the disk.
Every disk has a physically defined last cylinder, but when creating a
single device description, it is the last cylinder of the logical partition
that’s really the object of concern. Analysis operations aren’t concerned
with starting or finishing at any specific point on a disk. If the last
cylinder on the disk isn’t known, an arbitrary high value can be used. If
the scanner runs off the end of the disk, DiskSalv will report disk errors.
At this point, the operation can be stopped.

1.114 7207

This cycle gadget specifies the number of bytes per sector. All legal
values are in the cycler. All file systems in AmigaDOS 1.3 and earlier used
512 bytes/sector, and that’s still the most commonly used value today.
Since the AmigaDOS 2.00 file system, larger values have been possible. Some
versions of the file system had problems with very large blocks, but this
is not a problem. When used in analysis runs, DiskSalv will attempt to
reject blocks encountered that are formatted with a different byte/sector
value.

1.115 7209

This cycle gadget specifies the number of sectors per block. This ←↩
mechanism

is another way to get larger blocks in a partition. It has the advantage
over large bytes/sector setting in that every partition on the disk can
easily have a different logical block size. All legal values are in the
cycler. All file systems in AmigaDOS 2.1 and earlier used one Sector/Block,
and that’s still the most commonly used value today. Some early device
descriptions didn’t set this to one, so DiskSalv by default disables this
field for older file systems (this can be overridden by setting the

BIGBLOCKS

DiskSalv 58 / 98

command parameter).

Since the AmigaDOS 3.0 file system, larger values have been possible. The
analysis routine attempts to reject blocks formatted under any size but the
one selected here when scanning the disk. If a disk has been formatted with
partitions of differing settings, several analysis passes may be necessary
to find all partitions.

1.116 7205

This numeric field takes a startup code that is specific to the device
driver in use. Most drivers don’t do much with this field. A value of zero
is the default, and recommended if there’s no other value suggested by
documentation or copying in any mounted device (such as the current device
or one dropped in from Workbench).

1.117 7208

Many device drivers require a specific type of memory for their buffers, or
at least perform better with a particular type. Floppies once required Chip
RAM, though work properly with Fast memory in recent releases of the
trackdisk.device. Most others work fine with system default memory. On a
32-bit Amiga, DMA-driven Zorro II based hard disk controllers work much
better with DMA-24 memory, though most will use programmed I/O techniques
to deal with other memory.

1.118 3202

The Disk Scanner is the primary progress indicator for actual ←↩
DiskSalv

activity. Windows such as the
input
, Filter, or
Device Editor
are

used for setting up some kind of disk operation. Once a disk operation
actually starts, DiskSalv brings up the Disk Scanner window. This is an
informational display which provides a display of the current scanning
function being run, a tally of various objects encountered, a progress
indicator graph, and a list of major disk events.

The look of the scan window changes depending on several factors. The size
of the window is based on the system font and the size of the screen being
used. Several user options also control the look of this window.

Topic:

Displays

Button Options

DiskSalv 59 / 98

1.119 scan.display

There are various displays within the Disk Scanner, as shown above ←↩
. The

displays themselves are simple to explain. The Operation display indicates
the current type of scan being run. Most

Major Modes
are composed of

several scanner passes. The Device Scan display shows the current block,
plus a count of objects: files, directories, volumes, or errors, depending
on the

Major Mode
and scanner operation selected. The bar graph represents

the progress of the scan. In some operations, the progress indicated here
is an estimate. Finally, the Scanning Results display shows any major
significant results of the scan in progress, and can be instructed to pause
on any errors encountered.

Topic:

Operation Type

Device Scan Tally

Scanning Results

1.120 scan.operation

There are quite a few different scanning operations. There is no ←↩
need to

understand any of these in order to use DiskSalv, but they’re useful to
anyone interested in what’s going on. The operation types are described
below.

Operations:

Checking Root

Cleaning

Copying

Directory Check

Extras

Filtering

FS Analysis

Hash Check

Link Check

DiskSalv 60 / 98

List Trace

Loose Blocks

Paused

Purifying

Rehashing

Resolving

Salvaging

Scanning

Stopping...

1.121 scan.chkroot

In any
fix-in-place
mode, the disk’s directories must be certified

as correct, or changed to be correct. The root block is a special case,
since no fix can occur if the root block cannot be corrected. The operation
used here is the same as in the Directory Check routine, but it is one of
the first operations run after a scan in all fix-in-place modes.

1.122 scan.cleaning

This operation indicates that the input disk is being cleaned of ←↩
all

deleted files. This is the active part of the
Cleanup
mode. Once

a disk has been cleaned, none of the deleted objects remain, they are
completely wiped out and nothing can bring them back.

1.123 scan.copying

In this operation, objects from the input disk are simply copied to the
output disk. This is the active part of the Backup mode. The function is
similar to the Salvage operation, but since it runs on a presumably good
input volume, no special tricks are necessary to achieve the copy.

1.124 scan.chkdir

DiskSalv 61 / 98

This operation is the actual
fix-in-place
function that certifies the

structure of every subdirectory on a disk. If there’s a soft error in a
directory block, it can rebuild this subdirectory as long as there’s no
physical problem with the disk.

1.125 scan.expanding

When the scanner is started by the
Stream Restore
function, this

operation is run. During such a run, a structured archive stream is rebuilt
on the selected output device as an AmigaDOS directory.

1.126 scan.extras

Some modes have a small, mode-specific set of functions to run on the
scanned data set. This operation name is a catch-all for these kinds of
functions.

1.127 scan.filtering

When scanning takes place with a pattern selected, the pattern ←↩
must be

applied to each object encountered. Some
patterns
, such as file name,

file note, date, size, or protection comparisons, are completely resolved
during the scanning project, being local to the object. Other patterns can
only be applied once a full scan is complete, such as full path
comparisons. These are resolved here.

1.128 scan.analysis

This operation is run only when the
Best-Guess
pseudo file system

is selected. It chooses the most likely file system for the given disk,
based on all of the objects encountered on that disk.

1.129 scan.chkhash

DiskSalv 62 / 98

This operation, called during a
fix-in-place
operation, verifies the

integrity of every object as it appears on-disk. It does this by comparing
the internal disk model to the contents of each directory as they appear
on-disk. Each file encountered is checked completely by tracing out all
data and list blocks that appear as components of the file. Anything that
doesn’t pass this test is eliminated from the active directory tree of the
disk, but of course not physically erased from the disk itself.

1.130 scan.chklink

This is a
fix-in-place
operation that checks link objects. The hash

check routine will actually check that any links found are properly formed,
and eliminate those that aren’t. In this pass, interdependencies between
links and the file they reference are handled. Any hard link pointing to
an object that no longer exists will itself be removed. Symbolic links are
processed for correctness, though the file system no longer supports them.
No check is done on the object referenced by a symbolic link, since it can
easily be on another volume.

1.131 scan.list

Files beyond a certain length (36864 bytes in FFS with 512 bytes/sector)
use a linked list of list blocks to track additional file content blocks.
DiskSalv tracks any such list blocks encountered during a scan in this
phase, to locate possible partial files.

1.132 scan.loose

When scanning an Original File System disk, individual data blocks can be
identified. In this phase, any data blocks enountered that were not
assigned to a file are reconstructed as partial file nodes.

1.133 scan.paused

When the
pause
button is on, this is the operation displayed. The

previous operation resumes when pause is off. Other buttons, such as
stop
,

pause-on-error
, or the general kill gadget, still work while the

display and scan are paused.

DiskSalv 63 / 98

1.134 scan.purifying

This operation is the first
fix-in-place
pass, called only for

Repair
mode. It eliminates from the disk model any object that no longer ←↩

exists
in the disk’s directory tree, assuming that the tree is valid enough to
process in this way. This prevents deleted files from being restored by
Repair.

1.135 scan.rehash

Directory contents are presumed sorted in block sequence by the ←↩
fast file

system. Once the main
fix-in-place
operations have been run, this

function sorts the contents of all the directories on the disk.

1.136 scan.resolve

When a partial scan of the input disk is run, it’s common for parent nodes
to be missed. In this phase, any such unresolved parents are located.

1.137 scan.salvaging

In this phase, the input disk’s contents are being reconstructed ←↩
on the

output device selected on the
output window
. This is the primary

recover-by-copy
operation.

1.138 scan.scanning

This operation is the preliminary scan of the input disk. There ←↩
are

different scanning funtions, depending on the
Major Mode
selected,

but each builds a model of the input disk during this phase.

DiskSalv 64 / 98

1.139 scan.stopping

This operation is displayed after the user presses the stop button. This
indicates that DiskSalv has recognized the stop request, but must shut down
some things before it can respond.

1.140 scan.tally

The Device Scan display is simply one kind of progress indicator. ←↩
It shows

a number of object counts, which vary by the
Major Mode
selected.

Most of the time, the current block, a count of files, a count of
directories, and a count of errors will be displayed. When the scanner is
called up by the

Device Editor
, a running count of

volumes replaces the error count. During a disk remake operation, a count
of warnings and errors is kept.

In order to keep a scan running across the input disk as fast as is
practical, the Device Scan display is normally updated only after a number
of block counts. The frequency of update depends on the size of the input
disk. Any error encountered will force an immediate update of the display.

No matter the optimizations, it’s a simple fact that the time spent
providing this display, as well as the Scanning Results display, does take
some time away from scanning. When the

Quick Scan
option is selected

from the
input
window’s Settings menu, the scanner is opened as a much

smaller window, with less frequent Device Scan updates. There is a progress
indicator, but no

Scanning Results
display. In most cases, this

has a noticable effect on scanning speed, especially when the system’s CPU
and hard disk are very fast.

1.141 scan.results

The Scanning Results display chronicles every major event that ←↩
takes place

during any kind of scan. This is the same information that is written to a
log file, if such a file has been created on the

input window
. All the

information can scroll by rather quickly, but the
pause-on-error
feature

DiskSalv 65 / 98

button can be set to let the user see each error or warning as it scrolls
past.

Each type of event known to the scanner is given a unique four character
code. This is especially useful in log files, since it allows a search to
be done for any event. However, it’s also of general use, in that it
completely identifies each event. The event codes include:

CHEK

FILE

ROOT

DATA

FLNK

SLNK

DSCH

FREE

UDIR

DELD

GOOD

WASH

DLNK

KILL

????

ERR!

LIST

1.142 event.chek

This code marks check failures. During a
Check
mode pass, possible errors

are indicated but nothing is done about them. Check failures indicated on
directories are usually repaired by a subsequent Repair mode run. Files, on
the other hand, must be eliminated from the active disk tree when any
component block shows a check failure.

DiskSalv 66 / 98

1.143 event.data

In a scan of a disk formatted with the original file system, typed data
blocks are identified by this code. Under the fast file system, data blocks
are untyped.

1.144 event.dsch

Directory cache blocks are indicated by this code during a scan. These are
only meaningful under the new directory caching file systems. Damaged
directory cache blocks are usually not a problem, since DiskSalv can force
the file system itself to rebuild them.

1.145 event.deld

This code is used during
fix-in-place
functions to indicate objects that

have been judged as already deleted. In
Repair
mode, there is no desire to

restore any objects that are already deleted. In
Unformat
mode, DiskSalv

does attempt to bring back as much as possible, deleted or not, since it
must be less trusting of the existing disk format.

1.146 event.dlnk

Hard directory links are indicated during a scan with this code, ←↩
as long as

they’re considered valid. Like other objects, if the directory link must be
removed from the active disk tree, it will be shown with the

KILL
code

during the hash check phase of the
fix-in-place
routines. Links of all

kinds are tallied with the file count for the Device Scan display.

1.147 event.err

Any kind of read error returned from the input device’s driver is reported
with this code. These are usually some kind of hard failure on the input
disk.

DiskSalv 67 / 98

1.148 event.file

This code is used to mark a normal file encountered during most ←↩
scanning

operations. This just indicates the file header block, which identifies the
file by name, and indicates where the first group of file content blocks
are. Other components to a non-empty file will be stored elsewhere on the
disk. Due to the

AmigaDOS disk format
, it is possible for DiskSalv to find

only part of a damaged file. It is left up to the user to determine whether
a partial file is of any use in any given case.

1.149 event.flnk

Hard file links are indicated during a scan with this code. Like ←↩
other

objects, if the file link must be removed from the active disk tree, it
will be shown with the

KILL
code during the hash check phase of the

fix-in-place
routines. Links of all kinds are tallied with the file

count for the Device Scan display.

1.150 event.free

This code is displayed during scans of original file system disks to
indicate a block that hasn’t been used. There’s no way to tell on a
block-by-block basis that the block is unassigned. Since all OFS blocks are
typed, though, any untyped block can be assumed as free.

1.151 event.good

This code is used during a fix-in-place operation when a disk ←↩
object has

been judged properly formed. Directories are judged during the

Directory Check
operation, while other objects are judged during

the
Hash Check
operation.

DiskSalv 68 / 98

1.152 event.kill

When an object within the input disk’s directory tree has been ←↩
judged

flawed and unrepairable, DiskSalv will remove it from the active directory
tree, and display the object with the KILL code. This is necessary when a
file component or link block is damaged physically or logically, or when a
directory block is damaged physically. The

fix-in-place
routines can

always reconstruct a directory that has been logically damaged, though
this may cause the undeletion of some former files that still reside in
such a directory.

1.153 event.list

This code identifies any file list blocks that are encountered ←↩
during a

scan. An
AmigaDOS file format
stores a fixed number of block pointers to

a file’s content blocks within its header block. When the file is larger
than this number of pointers can support, a list block (sometimes called an
extension block) is created. Each extension block can access another set of
file content blocks.

1.154 event.root

This code is displayed when a scan encounters a disk’s root block. Each
valid partition has a single root block, which is in the center of the
disk. This block is much like a user directory block, though it stores some
volume-specific data.

1.155 event.slnk

A symbolic link block is indicated by this code. The current file systems
no longer support symbolic links, but they were partially supported in
earlier releases (AmigaOS 2.x). DiskSalv knows how to handle a symbolic
link based on the original specifications for it, and it will attempt to do
so if it encounters such an object. The fix-in-place routines can verify
that the on-disk structure of any symbolic link is correct, but since
symbolic links can reference alternate physical devices, no existence check
is done for the linked object.

1.156 event.udir

DiskSalv 69 / 98

This is the code displayed for any subdirectory objects encountered during
a scan. DiskSalv can supply the missing data for any damaged directory in
any mode, though it can’t fix a directory that’s located on a physcially
bad block.

1.157 event.wash

During a
Cleanup
operation, any object that is permanently eliminated

is indicated by this code. Only objects that have been deleted are removed,
and only on a valid partition.

1.158 event.unkn

When a fast file system scan encounters an untyped block, it uses this
code. Since FFS data blocks are untyped, there is no way to determine if a
block is assigned or not from the block itself.

1.159 scan.buttons

The Disk Scanner window has three option buttons. These can be ←↩
used to

control the progress of the scan, or simply stop it as quickly as possible.
Of course, there is also a standard close gadget on the window itself,
which will stop the scan and quit DiskSalv as quickly as possible.

Options:

Stop

Pause

Pause On Error

Ask On Error

1.160 3200

This button signals the scanner to stop the current operation as ←↩
quickly as

possible. It will immediately cause the Operation display to indicate
Stopping... In many cases, this causes an immediate termination of the
scanning. The initial disk scan in any mode can be stopped immediately,
for instance. In other cases, the current processing must continue for
awhile in order to leave the input or output disk in a proper state. The

DiskSalv 70 / 98

fix-in-place
routines, in particular, must completely finish

processing once they start modifying the input disk. On output to another
volume, files will not be broken up, so processing continues until the
current file has been restored.

1.161 3201

The pause button simply pauses the scan where it is. This allows ←↩
the user

to view the
Scanning Results
display, check statistics, etc. The pause

button is a toggle button; a single click pauses the scan, a second click
resumes the scan. When running in

pause-on-error
mode, any error will

pause the scan by setting the pause button. The pause button does not
lock out input; all other gadgets on the scanner display work normally.

1.162 3204

The pause-on-error button controls an auto-pause feature of the scanner
window. When on, any error or warning code found during a scan will cause
the pause button to be automatically set. It can be toggled off to continue
the scan just as if it were turned on by a user.

1.163 3205

The ask-on-error button controls and auto-inquire feature of the scanner
window. When on, any error encountered during a fix-in-place scan that
requires DiskSalv to modify the input disk will be prompted. The user may
decide to perform the fix or ignore it. Clearly, if the error isn’t
corrected, DiskSalv won’t fix the disk.

1.164 430b

The Output Window is brought up when DiskSalv has something that ←↩
must be

recovered by copying. A
recover-by-copy
operation is the primary

function run by
Salvage
or

Undelete
modes, and a secondary function

DiskSalv 71 / 98

run by any
fix-in-place
mode that must eliminate files in order to

render the input device format valid.

Topics:

The Browser

Path Setup

Project Menu

Settings Menu

Salvage
This window allows selection of files and output device for the ←↩

salvage
operation.

1.165 outputbrowser

The Browser is where files are selected for recovery to another ←↩
device.

When DiskSalv enters the browser as the result of a
recover-by-copy
or
backup
operation, no files are selected. The files present are

those that have been passed by any
pattern
filtering set up by

the user.

The Browser consists of two custom list views. A view entitled "Select
Directory" is on the right hand side of the

output window
, while on the

left hand side is a similar view entitled "Select Files". The Directory
list contains a structured list of all the directories encountered, while
the File list contains a flat list of all files contained in the current
directory. Each browser responds to an item selection, as well as the
selection of a number of extra function buttons along the right hand side
of the browser.

Each list supports the notion of current and selected. Some operations take
place on the single current item in each list, some operations take place
on all selected items in either or both lists. The final file recovery/copy
only includes those items that have been selected. Browser operations
include:

Directory File

Click on Item

DiskSalv 72 / 98

Click on Item

Info

Info

Parent

Select

Select

Clear

Clear

Forget

Forget

1.166 4201

A mouse click on a directory
browser
item sets that directory as the

current directory. When a directory is current, its file contents are
displayed in the file

browser
. A directory is only indicated as selected

when all of its contents are selected.

1.167 4207

Click here for information on the current directory. This information
includes the directory’s block number, date, and protection attributes.

1.168 4204

Click here to pick the parent of the current directory as the new current
directory. This item is ghosted if the current directory is the root
directory.

1.169 4205

Click here to select the current directory and all its children.

DiskSalv 73 / 98

1.170 4202

Click here to return all selected items in the current directory and all
its children to their unselected state.

1.171 4206

Click here to erase from working memory all currently selected items,
including directories and files. This has no effect on what is on disk,
it’s provided simply as an aid to the user, to help in organizing a
recovery or backup.

1.172 4214

A mouse click on a file
browser
item sets that file as the current

file. Clicking on a file item also toggles selectionof the file item.

1.173 4216

Click here for information on the current file or link. This information
includes the file’s block number, size, date, and protection attributes.

1.174 4208

Click here to select all of the files in the current browser level. This
works only at this level, not on any other branches of the parent
directory.

1.175 4203

Click here to return all selected files in the current browser level to
their unselected state. This works only at this level, not on any other
branches of the parent directory.

1.176 4215

Click here to erase from working memory all currently selected files at
this browser level. This has no effect on what is on disk, it’s provided
simply as an aid to the user, to help in organizing a recovery or backup.

DiskSalv 74 / 98

1.177 outputpathsetup

All disk recovery/backup data must be written out to an alternate ←↩
AmigaDOS

device of some kind. Devices can be selected by name, optionally via an
AmigaDOS file requester. DiskSalv provides a special

stream
format,

which stores a whole disk tree as a flat file,suitable for output to a file
or pipe.

Topics:

Output Path Gadget

Output Path Requester

Output Mode Select

1.178 4200

Click on the Output Path gadget to specify the output device or ←↩
path as a

string.
File system
level recovery can be to any file system device

or directory, while
streams
can go to files, pipes, or pipe-like devices

such as the SER: device. DiskSalv will create the directory or file if
necessary.

1.179 420a

Click here to call up a standard file requester to select the ←↩
output device

or path. This selection will be loaded into the
Output Path Gadget
when

completed.

1.180 4213

This cycle button allows selection of the output mode, which ←↩
determines how

DiskSalv will treat the device entered in the
Output Path Gadget
. If

a

DiskSalv 75 / 98

file system
output is indicated, DiskSalv will output a normal AmigaDOS

file tree structure to the indicated device. Directories will be created
as necessary, but output to a file or pipe will be displayed as an error.
If a

stream
output is indicated, DiskSalv will format the recovery data

as a flat byte stream, which can be output to a file on a valid file
system device, as well as pipes and pipe-like devices such as PIPE:, SER:,
or

TAPE:

1.181 outputproject

The
output window
has a project menu, which manages global help and

navigation to other parts of the program.

Topics:

Help

New Device

Quit

1.182 outputhelp

This item simply calls up the main
output window
help page.

1.183 4211

Select this item to return to the
input window
. The results of the

current scan are erased from memory, nothing additional is done to the
input disk.

1.184 4212

Select this to quit the DiskSalv program.

DiskSalv 76 / 98

1.185 outputsettings

This menu controls the settings of several simple
output window
parameters.

Topics:

Size Check

Warning Notes

Restore File Notes

Restore Protection

Restore Dates

Save Options

1.186 420b

Check this item to enable free space checking on the
output device
. Some

devices, like the RAM: device, always claim to be full. Output to such a
device will fail if this item is checked. This corresponds to the

NOSIZECHECK
command parameter.

1.187 420c

During a recovery, damage is sometimes detected to a recovered ←↩
file. When

this item is checked, warning notes to this effect are written to the
FileNote field of the affected file or directory. This corresponds to the

NOWARNING
command paramater.

1.188 420d

When this item is checked, FileNotes are restored to files and ←↩
directories.

When unchecked, they are ignored during recovery. This corresponds to the

NONOTES
command parameter.

DiskSalv 77 / 98

1.189 420e

When this item is checked, file protection is restored to files ←↩
and

directories. When unchecked, default protection is used during recovery.
This corresponds to the

NOPROTECT
command parameter.

1.190 420f

When this item is checked, date stamps are restored to files and
directories. When unchecked, the current date is used during recovery. This
corresponds to the

NODATES
command parameter.

1.191 4210

Pick this to save the selected options to the DiskSalv icon. The update is
actually done when DiskSalv exits.

1.192 4209

Click here to start the disk salvage or backup. This button will stay
ghosted until at least one item has been selected for recovery, and a valid
output device of some kind has been entered.

1.193 appendix

Additional information is available on the following topics:

DiskSalv Support Files

Glossary of Terms

Command Parameters

DiskSalv Archival Format

Memory Requirements

AmigaDOS Disk Format

DOSDrivers Files

The DiskDoctor Story

DiskSalv 78 / 98

1.194 supportfiles

There are a few files included with DiskSalv, which are designed ←↩
to agument

its normal operation. The files include:

DiskSalv.guide

DiskSalv looks for its online help file, DiskSalv.guide (this file,
incidently), in its home directory. Depending on your AmigaGuide setup, it
may be found elsewhere as well.

DiskSalv.catalog

DiskSalv looks for translation catalogs in the normal LOCALE: directory.
They should be named DiskSalv.catalog. DiskSalv2 catalog files will produce
strange results; they can be loaded, but are not recommended.

DiskSalv 3 has not yet been translated, so there is no current
DiskSalv.catalog.

DiskSalv.pattern

DiskSalv looks for a default
Pattern
file, named DiskSalv.pattern, in its

home directory. Any number of other pattern files may be manually loaded,
via the

Pattern Load
button.

1.195 glossary

Important terms in the understanding of DiskSalv include:

Device, DOS

Device, Exec

Disk

File System

Hard Erorr

Partition

Pattern, AmigaDOS

Pattern, DiskSalv

Rigid Disk Block

DiskSalv 79 / 98

Root Block

Soft Error

Streams

TAPE:

Tripos

Volume

1.196 glossary.adospattern

The AmigaDOS pattern matching language defines a flexible syntax for
defining regular expressions. The language include:

normal
Any normal character matches itself.

’special
The quote suppresses the special action of a special character.

?
Matches any single character.

%
Matches an empty string

[normal low-normal high]
Matches a range of characters.

~expression
Specifies a pattern matching anything expression doesn’t match.

#expression
Specifies a pattern matching zero or more of expression.

(expression)
Makes a sub-pattern of expression.

expression 1|expression 2
Matches expression 1 or expression 2

1.197 glossary.adosdate

AmigaDOS specifies file/directory dates using the following syntax:

day_number-month_abbrev-year_number

Examples include:

DiskSalv 80 / 98

23-May-61 May 23rd, 1961
24-Apr-90 April 24th, 1990
17-Jul-91 July 17th, 1991
12-Mar-94 March 12th, 1994

Month abbrevs are: Jan, Feb, Mar, Apr, Jun, Jul, Aug, Sep, Oct, Nov, Dec

1.198 glossary.dspattern

DiskSalv extends the AmigaDOS regular expression language into a ←↩
flexible

pattern matching language. DiskSalv complex patterns can match against
directories, files, dates, file sizes, and filenotes. They can be used to
include or exclude the matched item, and to stop the DiskSalv scanner on a
match. See

Patterns
for more information.

1.199 glossary.dosdevice

An AmigaDOS "device" is a often named physical disk or disk device ←↩
. If a

disk is fixed, the AmigaDOS device,
partition
, and physical
volume
all

reference the same thing. If the disk is removable, the AmigaDOS device
name references the physical drive mechanism, while the physical

volume
references a particular disk, independently of the particular ←↩

drive
mechanism.

A DOS device, which is basically just a file system server, is concerned
with high-level objects and complex commands. DOS devices know about
files, directories, and links, and provide functions to open, seek, read,
write, and close files, access file support data, etc.

See also
AmigaDOS File System
,
Exec Device

1.200 glossary.execdevice

An Exec device is the low-level device driver used by DiskSalv to ←↩
access an

input disk. DiskSalv can only repair or recover from
AmigaDOS devices

DiskSalv 81 / 98

that are built on Exec devices. For example, the RAM: disk is a ←↩
DOS

device, but it has no underlying Exec device. The DF0: floppy, however,
relies on the "trackdisk.device" Exec-level device to handle low-level
communications to the floppy hardware.

Exec-level devices are concerned with low-level objects and very simple
commands. Such devices are treated as arrays of fixed-sized blocks, and
commands are supplied to read, write, or format such blocks. Other
commands can control a drive’s motor and various other functions of the
physical disk drive.

See also
AmigaDOS Device

1.201 glossary.filesystem

A file system is a program that fields high-level commands about ←↩
AmigaDOS

structures: Files, Links, Directories, and the various other accounting
data on a disk. Each AmigaDOS device is represented as a file system task.
So, for instance, if I have a hard disk named "DH0:" as seen from AmigaDOS,
there will be a task running, say, the L:FastFileSystem program, and that
task’s name will be DH0.

There are several types of file systems in the Amiga Disk Operating System.
Some, like the RAM: device, are of little concern to DiskSalv. DiskSalv is
primarily concerned with standard disk-based file systems. There are
currently six variations of the AmigaDOS file system. A file system can
use the original, international, or directory-caching storage mechanism,
and its block organization can be "original" or "fast". The original block
structure is a bit more robust (e.g. easier to repair or recover), the fast
structure is faster.

See also
AmigaDOS Device

1.202 glossary.disk

While the term "disk" can be a bit vague, it’s generally used as a ←↩
synonym

for the physical
partition
or device under consideration.

1.203 glossary.harderror

A "hard error" is a physical defect of some kind on the input disk ←↩
. Hard

errors are usually the result of some physical failure on the disk, and can

DiskSalv 82 / 98

not be repaired by DiskSalv. It’s usually necessary to reformat any disk
that has hard errors, electing to map such blocks as "bad".

See also
Soft Error

1.204 glossary.partition

A disk partition is the most general physical instance of an AmigaDOS disk.
While a disk can be set up as a single entity, as with most floppies, it’s
usually more useful to divide large disks into several subsections, or
partitions. Each partition will have an AmigaDOS device name, an AmigaDOS
volume name, and any number of logical assigns depending on the system
setup.

1.205 glossary.rdb

The Rigid Disk Block, or RDB, is a convention for storage of useful
boot-time AmigaDOS data, in a controller-independent format. By convention,
the first cylinder or two of a hard disk (or other partitionable AmigaDOS
device) is reserved for the RDB. A device driver can simply start reading
this track to find data on the user-defined partitions, file systems, bad
block mappings, and other data for the disk. Since this was standardized
reasonably early in the evolution of Amiga hard disk controllers, nearly
every such controller supports the convention. So AmigaDOS hard disks can
be freely mixed and matched between system and controller, without need to
configure anything on the host system.

1.206 glossary.rootblock

All tree-oriented disk structures support the concept of a "root", or
top-level directory. In AmigaDOS file systems, there is a root block on
each partition. This block is located in the center of the disk.

1.207 glossary.softerror

A "soft error" is a logical defect of some kind on the input disk. ←↩
Soft

errors are usually created when the system fails during a disk write. This
can be indirectly due to a physical act: premature disk removal, power
failure, disk controller failure, keyboard reset, etc. This can also be due
to a failure in software, (e.g. a program crash). While the Amiga Operating
System can trap many types of software failure, it does not support memory
protection and therefore cannot offer perfect protection. An errant program
can cause the AmigaDOS

file system
or a disk’s device driver to fail,

DiskSalv 83 / 98

resulting in a soft error. A soft error may be repaired by DiskSalv,
depending on its location on the disk. Soft errors rarely result in any
need for reformatting of the input disk.

See also
Hard Error

1.208 glossary.streams

DiskSalv has the capability to format any
recover-by-copy
or

backup
data as a flat byte stream. This byte stream preserves the ←↩

directory tree
structure as found on the input disk by creating typed blocks within the
stream file for each element in the original disk tree. Such data can be
sent to any standard AmigaDOS pipe or pipe-like device, such as PIPE:,
SER:, or TAPE:.

While DiskSalv does not provide any sort of data compression, this
mechanism can be used to compress this output. For example, let’s assume
the user has a hard disk, DH0:, and a problem disk DH1:, which is too
severely damaged to fix in place. The user runs

Salvage
on the disk,

and gets everything listed. But it won’t quite fit on DH0:. Rather than
panic, or resort to copying out onto floppies, the user can run everything
through a compression tool, such as compress. Any compression program that
will accept input from a pipe (eg, the standard input) will work.

On the
output window
, one would enter a named pipe, say PIPE:recover

for example, into the
Output Path
gadget, and specify a stream output

to the
Output Mode
gadget. Now, in a separate shell, one would enter

something like:

1> compress <PIPE:recover >DH0:dh1_stream

Once the recovery is complete, the file dh1_stream should contain the
compressed contents recovered from the damaged DH1: device. Reformat the
DH1: device, then restart DiskSalv. In a separate shell, enter something
like:

1> uncompress <DH0:dh1_stream >PIPE:recover

Start up DiskSalv, select the
Restore Stream
button. Enter PIPE:recover

as the input device, the newly reformatted DH1: as the output device.

DiskSalv 84 / 98

DiskSalv will now restore the complete DH1: contents. After checking that
everything’s correct, the dh1_stream file can be deleted.

See also
Stream Format

1.209 glossary.tapedevice

DiskSalv can support most TAPE: devices, but doesn’t come with one. A TAPE:
device is a standard AmigaDOS file handler interfaced to some kind of tape
backup device. If you buy a backup unit specifically for use with the
Amiga, it should come with such a device, though it may have a different
name. With older systems, you add the vendor’s specified MountList example
to your Devs:MountList file, editing it if necessary to specify the device
(most tape drives use a SCSI controller, like Commodore’s "scsi.device")
and unit number, as approproiate.

If your tape drive didn’t come with a tape handler, you may be able to find
one that’s freely redistributable. The one I recommend is BTNtape, by Bob
Rethemeyer. While this was originally a very basic tape handler, as the
"Better Than Nothing" monniker would imply, today it’s fairly complete.
Best of all, it has support for a number of different tape drives. Unlike
hard drives, SCSI tape drives are a bit quirky with respect to their
command sets, so customization to the specific tape drive is often
required. BTNtape is on the Fred Fish CD-ROMs, older versions are in the
Fish floppy collection.

1.210 glossary.tripos

The Tripos Operating System is an OS that attained a reasonable level of
popularity in the UK. Due to time constraints during the development of
the Amiga Operating System, Metacomco Ltd. was contracted to adapt the DOS
subsystem of Tripos to the Amiga OS.

1.211 glossary.volume

A "Volume" in AmigaDOS is any logical device. All volume names end in ":",
and come in two flavors. Physical volumes are names associated with
particular disks or disk partitions. If a disk is fixed, its device name
and physical volume name reference the same item. With removable disks,
the device name references the physical drive (such as DF0:), while a
physical volume name references a particular disk (such as "Workbench").
Logical volume names are created with the "Assign" command in AmigaDOS, and
can reference an AmigaDOS device, physical volume, or subdirectory.

1.212 cli

DiskSalv 85 / 98

Command parameters are options specified to DiskSalv as command- ←↩
line or

ToolTypes keywords. Different setups can be created via multiple Project
icons.

ASKONERROR/S

BIGBLOCKS/T

DEFAULTFS/K

DISKCACHE/N

FILESYSTEM/K

FORCEGUIDE/S

FONT/K

FROM/K

INTERACTIVE/S

KEEPDOS/S

KILLDOS/S

LOADDEV/K

LOWMEM/S

MAKELINKS/S

MEMCHUNK/N

MODE/K

NOARCHIVE/S

NODATES/S

NODEEPSCAN/S

NOGUIDE/S

NONOTES/S

NOPROTECT/S

NOSIZECHECK/S

NOWARNING/S

PATHMAX/N

PAUSEONERROR/S

DiskSalv 86 / 98

PUBSCREEN/K

QUICKSCAN/S

REJECTION/N

RETRY/N

SMALLWINDOW/S

TAGCHAR/K

TO/K

1.213 cp.askonerror

This command parameter presets the
Ask on Error
mode of the scanner,

causing DiskSalv to automatically prompt the user before making any
modifications to the input disk, during any

fix-in-place
operation.

1.214 cp.bigblocks

This lets the user specifiy whether support for multiple sectors per block
is enabled. On pre-V39 systems, occasionally DOS devices claimed for some
reason to have more than one sector per block. Since real support of this
didn’t appear until the V40 FileSystem, which apparently needs V39 to run,
multiple sector per block support is off by default in on a pre-V39 system,
on by default for V39 systems and above.

1.215 cp.defaultfs

This allows the user to specify the fallback file system to use on ←↩
the

input device. Normally, DiskSalv will determine a partition’s file system
from its root block, but if that root block is damaged, DiskSalv needs this
fallback. Normally this is the

Best-Guess
pseudo file system, but

it can be changed here. Please see
File System Selection
for more information.

DiskSalv 87 / 98

1.216 cp.diskcache

This specifies the number of blocks to be used for the disk cache (which is
actually a pre-fetch buffer). The default size is 8 blocks, and can be set
between 0 (no cache) and 255 blocks.

1.217 cp.filesystem

This allows the user to specify the file system to use on the ←↩
input device.

Normally, DiskSalv will determine a partition’s file system from its root
block. If for some reason that information is unavailable or wrong, this
allows the file system type to be specified by force. The supported file
systems include:

OFS Original File System.
FFS Fast File System.
OFS Intl. OFS with ISO 8-bit character support.
FFS Intl. FFS with ISO 8-bit character support.
DC-OFS OFS with directory caching.
DC-FFS FFS with directory caching.

Best-Guess
This pseudo file system selects the best match.

DiskSalv can detect, but not actually process, several other file system
types, including some MS-DOS types. Please see

File System Selection
for more information.

1.218 cp.forceguide

This switch is now no longer necessary. Originally this was designed to
suppress the loading of the DiskSalv guide file for versions of the
amigaguide.library before V39. This latest version of DiskSalv incorporates
work-arounds to the bugs in these older guide libraries that allows safe
operation. Both hot links from DiskSalv or direct loading by the AmigaGuide
program work fine.

1.219 cp.font

This specifies a font and point size to use, rather than the system default
font. DiskSalv will use this font only if it allows the DiskSalv window to
size properly. If not, the screen and then system defaults will be tried,
with a final drop back to topaz 8, which always works. On the CLI, this
should be specified as font/point or font,point. As a tool type, font point
also works.

DiskSalv 88 / 98

1.220 cp.from

This keyword specifies an input device, the device that will be operated
on. This must be a true AmigaDOS device, not a subdirectory or assignment,
and it must be based on one of the standard file systems with underlying
device driver.

1.221 cp.interactive

This forces DiskSalv into interactive operation (eg, it waits for user
input). When run from the CLI, DiskSalv will by default do as much as it
can non-interactively before going into interactive mode.

1.222 cp.keepdos

The FileSystem (eg, AmigaDOS) is usually locked out from the input device
during scan and recovery operations. This option will prevent such a
lockout. Fix-In-Place operations are not affected by this, as they
absolutely requie a FileSystem lockout since they are modifying the input
disk. Note that allowing any writes to the input disk during a DiskSalv
operation will almost certainly cause DiskSalv to malfunction.

1.223 cp.killdos

This option forces DiskSalv to do its job without using any device directed
DOS functions or file system packets. Normally, DiskSalv uses a handfull
of DOS library functions on input disks. This is designed to make DiskSalv
safe for use on disks that crash AmigaDOS or the particular file system in
use. This is a somewhat dangerous option, since it prevents DiskSalv from
locking the file system out of a device (since that requires a file system
packet). It works best on devices that can’t be given to AmigaDOS because
they’re too damaged. Note that DOS is automatically avoided on unmounted
devices.

1.224 cp.loaddev

This argument takes the name of a
DOSDrivers
compatible device

description file, which it will load and set as the current input device.

1.225 cp.lowmem

DiskSalv 89 / 98

This specifies low-memory mode. If DiskSalv runs out of memory on a system
in normal mode, it may be successful in low-memory mode. This
automatically causes the chunky allocator, file path buffer, and disk cache
to go to minimum sizes. It cuts out a number of other internal things that
generally just affect performance rather than success.

1.226 cp.makelinks

This causes DiskSalv to actually create links on the output volume.
Normally it instead creates a script file which will create the links.

1.227 cp.memchunk

This specifies the memory chunk size for DiskSalv’s chunky allocator to
use. By default, this is 4K, and can be set between 1K and 128K.

1.228 cp.mode

There are several kinds of functions that DiskSalv will run. The ←↩
modes

include
Salvage
,
Undelete
,
Repair
,
Unformat
,

Check
,
Backup
, and
Cleanup
. When running with a

localization, either the built-in or localized mode namesmay be supplied as
arguments.

1.229 cp.noarchive

When in backup mode, DiskSalv normally sets the archival bit on any file
that it backs up. This switch will prevent archive bits from being set.

DiskSalv 90 / 98

1.230 cp.nodates

This option will inhibit restoration of the original file date in
Recover-by-Copy operations.

1.231 cp.nodeepscan

This inhibits extra low-level processing from being done floppy disks. Such
processing can recover data not normally accessable through the
trackdisk.device, but it causes extra memory to be used.

1.232 cp.noguide

This inhibits DiskSalv’s opening of the AmigaGuide.library. A severe bug in
some early (V34) versions of the AmigaGuide library cause undefined
behavior, including drastic system crashes, if the AmigaGuide library
attempts to open a guide file but fails. This prevents DiskSalv from making
that attempt.

1.233 cp.nonotes

This option will inhibit restoration of the original FileNote in
Recover-by-Copy operations (though warning notes will override original
notes).

1.234 cp.noprotect

This option will inhibit restoration of the original protection codes in
Recover-by-Copy operations.

1.235 cp.nosizecheck

This inhibits automatic size checking of the output volume. Normally,
DiskSalv watches the size of the output volume to have an idea ahead of
time that a volume will fill up. Some devices, such as RAM:, are
dynamically sized and always indicate full when asked, so this parameter is
mainly intended for such devices (DiskSalv actually invokes this
automatically for RAM:, but it would have to be specified manually for
other such devices).

DiskSalv 91 / 98

1.236 cp.nowarning

DiskSalv will normally attach a warning or error message, as a FileNote, to
any file it restores via a Recover-by-Copy operation that it considers
suspect or bad. This option will inhibit such action.

1.237 cp.pathmax

This specifies the maximum length of a file path. The default value is 512
bytes, and can be set between 256 bytes and 4K.

1.238 cp.pauseonerror

This command parameter causes all scan runs to set
Pause on Error
mode by

default.

1.239 cp.pubscreen

This specifies the public screen, by name, for DiskSalv to start up on. If
none is specified, DiskSalv will start up on the Workbench screen (eg,
default public screen).

1.240 cp.quickscan

This specifies a faster disk scanning mode. The speed of a disk scan is
improved by cutting down on the visual display. DiskSalv will still show a
"gas-guage" indicator, but it won’t list objects as they are encountered.

1.241 cp.rejection

This specifies a filter strength, between 1 and 10, that influences
DiskSalv’s assessment of whether or not a disk block matches a specific
block type. This is generally left at the default, 6. In some cases,
adjusting this may improve the performance of the scanner, depending on the
disk problems at hand. It can also make the scanner perform worse.

Technically speaking, this supplies a normalized adjustment to the decision
threshold in the fuzzy disk block matching routines within DiskSalv. Lower
values allow less qualified blocks to be accepted, while the full scale 10
setting causes only pefect blocks to be accepted. The main problem with
very low values is that block typing can suffer -- a directory may be seen
as file, or vice-versa.

DiskSalv 92 / 98

1.242 cp.retry

This argument changes the number of retries a device drive will run on a
read failure. USE THIS OPTION WITH CAUTION! This function uses the
convention of the trackdisk.device for retry count, which isn’t guaranteed
to be supported by other device drivers. In general, the default retry
count is what you want to use. When a device has a large number of errors,
it can be processed much faster by setting this parameter as low as zero,
if the selected device supports this convention. If not, there’s a chance
it will cause some unknown problem, so it’s best to use only as a last
resort.

1.243 cp.skipdevs

This parameter allows the user to specify a list of devices that will
be ignored by DiskSalv. For example, to ignore two network devices,
"UNIX:" and "VAX:", let’s say, the parameter is entered as:

SKIPDEVS UNIX:|VAX:

Any number of devices may be entered. The primary use of this is to
restrict the DiskSalv device list from using invalid devices. DiskSalv
can normally reject such devices anyway, but in some cases, it may not
reject it correctly, or it may access invalid memory. This is
primarily due to the fact that AmigaDOS doesn’t provide a truely
reliable way to find standard file system based devices.

1.244 cp.smallwindow

This causes DiskSalv to build a minimal scanning display window, even on
large screens.

1.245 cp.tagchar

This is maintained only for command-line compatibility with DiskSalv 2. In
DiskSalv 2, a character could be specified to indicate objects that are
tagged in the file browser. This was done because the standard list gadget
in AmigaOS 2.x could not do any kind of highlighting. DiskSalv 3 uses a
custom list gadget for all its lists, and can therefore highlight
selections in AmigaOS 2.x and 3.x.

1.246 cp.to

This keyword specifies an output device, the device that will receive any
recover-by-copy files that DiskSalv finds. This may be any AmigaDOS
device, volume, or subdirectory. If a non-existant subdirectory is
specified, one will be generated.

DiskSalv 93 / 98

1.247 streamformat

The DiskSalv Stream concept was designed to provide a reliable
backup/archival mechanism for data processed by DiskSalv. This format
retains everything DiskSalv can do with recovery or backup, but puts it in
a more manageable form, which can be processed by compression utilities or
directed to tape.

The DiskSalv stream format is based on tagged 512 byte blocks, regardless
of the block size of the input disk. Each block starts with its type
identifier, which always a 4-byte ASCII code:

ROOT
The archive root/start

UDIR
User directory header

FILE
Normal file header

DATA
Data belonging to a file

DLNK
Directory link header

FLNK
File link header

SLNK
Symbolic link header

ERRS
An error block

ENDA
The archive’s end

1.248 sf.root

This is the ROOT structure. All stream blocks are padded to 512 bytes.

LONG ’ROOT’ ; Block type.
LONG pad[2] ; Unused.
LONG parent ; The id number for the parent block.
LONG id ; The id number for the object.
LONG checksum ; A checksum code goes here.
char name[32] ; The archive name
DateStamp created ; The volume’s creation date.
DateStamp modified ; The volume’s modification date.
DateStamp date ; The archive’s creation date.
LONG barcount ; A count of file objects

DiskSalv 94 / 98

1.249 sf.udir

This is the UDIR structure. All stream blocks are padded to 512 bytes.

LONG ’UDIR’ ; Block type.
LONG pad[2] ; Unused.
LONG parent ; The id number for the parent block.
LONG id ; The id number for the object.
LONG checksum ; A checksum code goes here.
char filename[32] ; The File name.
LONG protect ; The Protection field.
DateStamp date ; The File date.
char filenote[92] ; The FileNote.

1.250 sf.file

This is the FILE structure. All stream blocks are padded to 512 bytes.

LONG ’FILE’ ; Block type.
LONG size ; File size in bytes.
LONG count ; File size in blocks.
LONG parent ; The id number for the parent block.
LONG id ; The id number for the object.
LONG checksum ; A checksum code goes here.
char filename[32] ; The File name.
LONG protect ; The Protection field.
DateStamp date ; The File date.
char filenote[92] ; The FileNote.

1.251 sf.data

This is the DATA structure. All stream blocks are padded to 512 bytes.

LONG ’DATA’ ; Block type.
LONG size ; Byte size of the data block.
LONG count ; Block sequence in file.
LONG parent ; The id number for the parent block.
LONG id ; The id number for the object.
LONG checksum ; A checksum code goes here.
LONG data[] ; The of the structure stores data.

1.252 sf.dlnk

This is the DLNK structure. All stream blocks are padded to 512 bytes.

LONG ’DLNK’ ; Block type.
LONG pad[2] ; Unused.
LONG parent ; The id number for the parent block.
LONG id ; The id number for the object.

DiskSalv 95 / 98

LONG checksum ; A checksum code goes here.
char filename[32] ; The File name.
LONG protect ; The Protection field.
DateStamp date ; The File date.
char filenote[92] ; The FileNote.
LONG link ; File/Directory ID to link to.
LONG chain ; Link chain, if any

1.253 sf.flnk

This is the FLNK structure. All stream blocks are padded to 512 bytes.

LONG ’FLNK’ ; Block type.
LONG pad[2] ; Unused.
LONG parent ; The id number for the parent block.
LONG id ; The id number for the object.
LONG checksum ; A checksum code goes here.
char filename[32] ; The File name.
LONG protect ; The Protection field.
DateStamp date ; The File date.
char filenote[92] ; The FileNote.
LONG link ; File/Directory ID to link to.
LONG chain ; Link chain, if any

1.254 sf.slnk

This is the SLNK structure. All stream blocks are padded to 512 bytes.

LONG ’SLNK’ ; Block type.
LONG pad[2] ; Unused.
LONG parent ; The id number for the parent block.
LONG id ; The id number for the object.
LONG checksum ; A checksum code goes here.
char filename[32] ; The File name.
LONG protect ; The Protection field.
DateStamp date ; The File date.
char filenote[92] ; The FileNote.
char link[] ; The link name goes here.

1.255 sf.errs

This is the ERRS structure. All stream blocks are padded to 512 bytes.

LONG ’ERRS’ ; Block type.
LONG junk[] ; The rest is undefined.

DiskSalv 96 / 98

1.256 sf.enda

This is the ENDA structure. All stream blocks are padded to 512 bytes.

LONG ’ENDA’ ; Block type.
LONG pad[2] ; Unused.
LONG parent ; The id number for the parent block.
LONG id ; The id number for the object.
LONG checksum ; A checksum code goes here.
LONG pad ; Unused
LONG filecount ; Number of files in archive.
LONG dircount ; Number of directories in archive.
LONG linkcount ; Number of links in archive.
LONG errcount ; Number of recorded errors
LONG objectcount ; Total count of objects.
DateStamp date ; Date code for recovery set.
LONG pad[2] ; Unused
LONG dwalloc ; Total buffer size
LONG pad ; Unused

1.257 memoryrequirements

DiskSalv attempts to conserve on memory, but there are definite
requirements that are fixed. These can be simply summarized:

Item Memory used

DISK OVERHEAD 2 bits per block

FILE 8 bytes
LINK 24 bytes plus file name length
DIRECTORY, FFS 24 bytes plus file name length
DIRECTORY, DC-FFS 28 bytes plus file name length

1.258 amigadosformat

SECTION NOT COMPLETE

1.259 dosdrivers

DiskSalv can read and write Amiga DOSDrivers files. These files ←↩
are

standard device description files, used by the AmigaDOS Mount command. The
DOSDrivers form of the mount file was originated in AmigaOS 2.1, as a
slight variation of the MountList form. In this file format, the AmigaDOS
device name is derived from the file name, and the file contains a single
device description.

The

DiskSalv 97 / 98

Save Device
button on the

input window
and the

Save to File...
can save the current device to a DOSDrivers format file. This is

necessarily a complete file; some
parameters
may be determined

by the device driver type.

Similarly, a DOSDrivers file may be loaded via the
Load Device
button

on the
input window
or the

Load from File...
menu item on the

Device Editor
window. It may also be loaded by dropping it by

icon directly into either window. The
parameters
not of interest

to DiskSalv are ignored.

1.260 dosdrivers.params

The following DOSDrivers parameters are of interest to DiskSalv. These are
used by DiskSalv to build internal device descriptions, and they’re written
out when DiskSalv creates a DOSDrivers file.

Parameter Explanation

Name Taken from the file name

BlocksPerTrack Size of a track, in blocks
BlockSize Longword size of a block
BufMemType Type of memory, 0 for anything, 3 for chip
Device Device driver name, like "scsi.device"
DosType 32-bit DOS type identifier
Flags Flags for the OpenDevice() call
HighCyl Highest cylinder on the partition
LowCyl Lowest cylinder on the partition
Reserved Number of blocks reserved on a partition
SectorsPerBlock Number of sectors in a block
SectorsPerTrack Size of a track, in sectors
SectorSize Longword size of a sector
Surfaces Number of active disk surfaces, or heads
Unit Device driver’s unit number

Note that older file systems don’t support multiple sectors per block, and
don’t understand sector-based parameters. DiskSalv saves in terms of
SectorsPerTrack and SectorSize if the SectorsPerBlock parameter is other

DiskSalv 98 / 98

than 1. Otherwise, it uses the better supported BlocksPerTrack and
BlockSize parameters.

1.261 diskdoctor

DiskSalv’s First Competition

When the Amiga was first introduced, much was made of the robustness of its

file system
. In the process of working my first Amiga software project,

I ran into a disk error. Unfortunately, no tool was available at the time
that would do anything about this error, so I started writing DiskSalv.

Shortly thereafter, the DiskDoctor program was introduced. Unlike my
original DiskSalv, this program claimed to fix disks in-place rather by
copying out to another volume. With floppy disks, the recover by copy
mechanism wasn’t much of a problem, but once hard disks became popular, the
fix-in-place solution was the solution of choice.

Unfortunately, DiskDoctor was flawed. While it could repair a disk, it
could also cause damage to a disk’s structure. It did improve over the
years, but was never considered to be reliable. Eventually it was removed
from the Workbench entirely.

The Demise of the DiskDoctor

The story I was told goes something like this. The software folks were not
quite sure whether DiskDoctor should be dumped or improved, so they decided
to leave it up to DiskDoctor itself. They put the DiskDoctor sourced on an
old floppy, then ran DiskDoctor on it. As often happened, DiskDoctor
damaged this undamaged disk. So, while it’s often said that DiskDoctor was
"sued for malpractice", it’s more correct to state that DiskDoctor
committed suicide.

	DiskSalv
	DiskSalv Help
	dave
	a3000plus
	nyx
	deathbed.vigil
	cool.projects
	schatztruhe
	iam
	whatsnew
	version1617
	dsforward
	intro
	goesbad
	notfix
	canhelp
	intro.fixinplace
	intro.wherebadfiles
	intro.recoverbycopy
	install
	install.wb
	install.shell
	install.problems
	quickstart
	quick.setup
	quick.scan
	quick.output
	problems
	prob.error
	prob.key
	prob.ndos
	prob.novol
	prob.nodev
	giveitaway
	2304
	devicesetup
	2200
	basiclistviews
	devlistreq
	2213
	2201
	bestguess
	2215
	2202
	mmsalvage
	mmundelete
	mmrepair
	mmunformat
	mmcheck
	mmbackup
	mmcleanup
	inputbuttons
	2204
	inputbuttons.about
	2203
	2214
	220d
	2208
	2212
	2205
	220f
	220e
	inputproject
	2207
	inputsettings
	2209
	220a
	2210
	2211
	2216
	220b
	220c
	2206
	patterns
	pat.names
	pat.attributes
	pat.compare
	pat.pattern
	pat.group
	pat.path
	pat.note
	pat.date
	pat.size
	pat.protect
	pat.match
	pat.comment
	deviceedit
	deviceselect
	devsel.current
	devsel.workbench
	devsel.dosdrivers
	7306
	720a
	720b
	720c
	720d
	deveditmenu
	devedithelp
	720e
	rdbinout
	7211
	7212
	7214
	7215
	7304
	paramfields
	7200
	7210
	7201
	7202
	7213
	7206
	7203
	7204
	7207
	7209
	7205
	7208
	3202
	scan.display
	scan.operation
	scan.chkroot
	scan.cleaning
	scan.copying
	scan.chkdir
	scan.expanding
	scan.extras
	scan.filtering
	scan.analysis
	scan.chkhash
	scan.chklink
	scan.list
	scan.loose
	scan.paused
	scan.purifying
	scan.rehash
	scan.resolve
	scan.salvaging
	scan.scanning
	scan.stopping
	scan.tally
	scan.results
	event.chek
	event.data
	event.dsch
	event.deld
	event.dlnk
	event.err
	event.file
	event.flnk
	event.free
	event.good
	event.kill
	event.list
	event.root
	event.slnk
	event.udir
	event.wash
	event.unkn
	scan.buttons
	3200
	3201
	3204
	3205
	430b
	outputbrowser
	4201
	4207
	4204
	4205
	4202
	4206
	4214
	4216
	4208
	4203
	4215
	outputpathsetup
	4200
	420a
	4213
	outputproject
	outputhelp
	4211
	4212
	outputsettings
	420b
	420c
	420d
	420e
	420f
	4210
	4209
	appendix
	supportfiles
	glossary
	glossary.adospattern
	glossary.adosdate
	glossary.dspattern
	glossary.dosdevice
	glossary.execdevice
	glossary.filesystem
	glossary.disk
	glossary.harderror
	glossary.partition
	glossary.rdb
	glossary.rootblock
	glossary.softerror
	glossary.streams
	glossary.tapedevice
	glossary.tripos
	glossary.volume
	cli
	cp.askonerror
	cp.bigblocks
	cp.defaultfs
	cp.diskcache
	cp.filesystem
	cp.forceguide
	cp.font
	cp.from
	cp.interactive
	cp.keepdos
	cp.killdos
	cp.loaddev
	cp.lowmem
	cp.makelinks
	cp.memchunk
	cp.mode
	cp.noarchive
	cp.nodates
	cp.nodeepscan
	cp.noguide
	cp.nonotes
	cp.noprotect
	cp.nosizecheck
	cp.nowarning
	cp.pathmax
	cp.pauseonerror
	cp.pubscreen
	cp.quickscan
	cp.rejection
	cp.retry
	cp.skipdevs
	cp.smallwindow
	cp.tagchar
	cp.to
	streamformat
	sf.root
	sf.udir
	sf.file
	sf.data
	sf.dlnk
	sf.flnk
	sf.slnk
	sf.errs
	sf.enda
	memoryrequirements
	amigadosformat
	dosdrivers
	dosdrivers.params
	diskdoctor

